Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 79, Issue 4, Pages 560–570
DOI: https://doi.org/10.4213/mzm2725
(Mi mzm2725)
 

This article is cited in 4 scientific papers (total in 4 papers)

On periodic solutions of ordinary differential equations with discontinuous right-hand side

A. V. Zuev

M. V. Lomonosov Moscow State University
Full-text PDF (227 kB) Citations (4)
References:
Abstract: A new version of the method of translation along trajectories, which does not require the uniqueness of the solution of the Cauchy problem, is applied to the proof of the existence theorem for vector-valued periodic solutions of ordinary differential equations of first and second order. This result is applicable to equations and differential inclusions with discontinuous right-hand side. Several applications of the theorems proved in this paper are considered in cases which are not covered by the classical theory of ordinary differential equations with continuous right-hand side and equations with right-hand side satisfying the Carathéodory conditions.
Received: 23.12.2004
English version:
Mathematical Notes, 2006, Volume 79, Issue 4, Pages 518–527
DOI: https://doi.org/10.1007/s11006-006-0057-z
Bibliographic databases:
UDC: 517.911.5+517.927.21
Language: Russian
Citation: A. V. Zuev, “On periodic solutions of ordinary differential equations with discontinuous right-hand side”, Mat. Zametki, 79:4 (2006), 560–570; Math. Notes, 79:4 (2006), 518–527
Citation in format AMSBIB
\Bibitem{Zue06}
\by A.~V.~Zuev
\paper On periodic solutions of ordinary differential equations with discontinuous right-hand side
\jour Mat. Zametki
\yr 2006
\vol 79
\issue 4
\pages 560--570
\mathnet{http://mi.mathnet.ru/mzm2725}
\crossref{https://doi.org/10.4213/mzm2725}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2251144}
\zmath{https://zbmath.org/?q=an:1144.34028}
\elib{https://elibrary.ru/item.asp?id=9210526}
\transl
\jour Math. Notes
\yr 2006
\vol 79
\issue 4
\pages 518--527
\crossref{https://doi.org/10.1007/s11006-006-0057-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000237374700023}
\elib{https://elibrary.ru/item.asp?id=14273696}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645983219}
Linking options:
  • https://www.mathnet.ru/eng/mzm2725
  • https://doi.org/10.4213/mzm2725
  • https://www.mathnet.ru/eng/mzm/v79/i4/p560
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:395
    Full-text PDF :208
    References:46
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024