Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 79, Issue 4, Pages 505–521
DOI: https://doi.org/10.4213/mzm2721
(Mi mzm2721)
 

This article is cited in 14 scientific papers (total in 14 papers)

Integro-local theorems for sums of independent random vectors in the series scheme

A. A. Borovkov, A. A. Mogul'skii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: Let $S(n)=\xi(1)+\dots+\xi(n)$ be a sum of independent random vectors $\xi(i)=\xi_{(n)}(i)$ with general distribution depending on a parameter $n$. We find sufficient conditions for the uniform version of the integro-local Stone theorem to hold for the asymptotics of the probability $\mathsf P(S(n)\in\Delta[x))$, where $\Delta[x)$ is a cube with edge $\Delta$ and vertex at a point $x$.
Received: 20.05.2004
Revised: 05.09.2005
English version:
Mathematical Notes, 2006, Volume 79, Issue 4, Pages 468–482
DOI: https://doi.org/10.1007/s11006-006-0053-3
Bibliographic databases:
UDC: 519.214
Language: Russian
Citation: A. A. Borovkov, A. A. Mogul'skii, “Integro-local theorems for sums of independent random vectors in the series scheme”, Mat. Zametki, 79:4 (2006), 505–521; Math. Notes, 79:4 (2006), 468–482
Citation in format AMSBIB
\Bibitem{BorMog06}
\by A.~A.~Borovkov, A.~A.~Mogul'skii
\paper Integro-local theorems for sums of independent random vectors in the series scheme
\jour Mat. Zametki
\yr 2006
\vol 79
\issue 4
\pages 505--521
\mathnet{http://mi.mathnet.ru/mzm2721}
\crossref{https://doi.org/10.4213/mzm2721}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2251140}
\zmath{https://zbmath.org/?q=an:1114.60037}
\elib{https://elibrary.ru/item.asp?id=9210522}
\transl
\jour Math. Notes
\yr 2006
\vol 79
\issue 4
\pages 468--482
\crossref{https://doi.org/10.1007/s11006-006-0053-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000237374700019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33646004908}
Linking options:
  • https://www.mathnet.ru/eng/mzm2721
  • https://doi.org/10.4213/mzm2721
  • https://www.mathnet.ru/eng/mzm/v79/i4/p505
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025