|
This article is cited in 14 scientific papers (total in 14 papers)
Integro-local theorems for sums of independent random vectors in the series scheme
A. A. Borovkov, A. A. Mogul'skii Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract:
Let $S(n)=\xi(1)+\dots+\xi(n)$ be a sum of independent random vectors $\xi(i)=\xi_{(n)}(i)$ with general distribution depending on a parameter $n$. We find sufficient conditions for the uniform version of the integro-local Stone theorem to hold for the asymptotics of the probability $\mathsf P(S(n)\in\Delta[x))$, where $\Delta[x)$ is a cube with edge $\Delta$ and vertex at a point $x$.
Received: 20.05.2004 Revised: 05.09.2005
Citation:
A. A. Borovkov, A. A. Mogul'skii, “Integro-local theorems for sums of independent random vectors in the series scheme”, Mat. Zametki, 79:4 (2006), 505–521; Math. Notes, 79:4 (2006), 468–482
Linking options:
https://www.mathnet.ru/eng/mzm2721https://doi.org/10.4213/mzm2721 https://www.mathnet.ru/eng/mzm/v79/i4/p505
|
Statistics & downloads: |
Abstract page: | 630 | Full-text PDF : | 253 | References: | 74 | First page: | 7 |
|