Abstract:
We give a complete proof of Morrey's estimate for the W1,p-norm of a solution of a second-order elliptic equation on a domain in terms of the L1-norm of this solution. The dependence of the constant in this estimate on the coefficients of the equation is investigated.
Citation:
S. V. Shaposhnikov, “On Morrey's estimate of the Sobolev norms of solutions of elliptic equations”, Mat. Zametki, 79:3 (2006), 450–469; Math. Notes, 79:3 (2006), 413–430
\Bibitem{Sha06}
\by S.~V.~Shaposhnikov
\paper On Morrey's estimate of the Sobolev norms of solutions of elliptic equations
\jour Mat. Zametki
\yr 2006
\vol 79
\issue 3
\pages 450--469
\mathnet{http://mi.mathnet.ru/mzm2714}
\crossref{https://doi.org/10.4213/mzm2714}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2251368}
\zmath{https://zbmath.org/?q=an:1143.35016}
\elib{https://elibrary.ru/item.asp?id=9192933}
\transl
\jour Math. Notes
\yr 2006
\vol 79
\issue 3
\pages 413--430
\crossref{https://doi.org/10.1007/s11006-006-0046-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000237374700012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33646009699}
Linking options:
https://www.mathnet.ru/eng/mzm2714
https://doi.org/10.4213/mzm2714
https://www.mathnet.ru/eng/mzm/v79/i3/p450
This publication is cited in the following 8 articles:
Haesung Lee, “Analysis of linear elliptic equations with general drifts and L1-zero-order terms”, Journal of Mathematical Analysis and Applications, 2025, 129425
Haesung Lee, “Uniform approximation by harmonic polynomials for solving the Dirichlet problem of Laplace's equation on a disk”, Lith Math J, 2025
Baur B., Grothaus M., “Construction and Strong Feller Property of Distorted Elliptic Diffusion With Reflecting Boundary”, Potential Anal., 40:4 (2014), 391–425
Benedict Baur, Martin Grothaus, Patrik Stilgenbauer, “Construction of ${\mathcal L}^{{p}}$ -strong Feller Processes via Dirichlet Forms and Applications to Elliptic Diffusions”, Potential Anal, 38:4 (2013), 1233
Dashti M., Stuart A.M., “Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem”, SIAM J. Numer. Anal., 49:6 (2011), 2524–2542
V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic and parabolic equations for measures”, Russian Math. Surveys, 64:6 (2009), 973–1078
S. V. Shaposhnikov, “On Interior Estimates of the Sobolev Norms of Solutions of Elliptic Equations”, Math. Notes, 83:2 (2008), 285–289
V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Estimates of densities of stationary distributions and transition probabilities of diffusion processes”, Theory Probab. Appl., 52:2 (2008), 209–236