Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2003, Volume 74, Issue 3, Pages 369–386
DOI: https://doi.org/10.4213/mzm271
(Mi mzm271)
 

This article is cited in 25 scientific papers (total in 25 papers)

On Morse–Smale Diffeomorphisms with Four Periodic Points on Closed Orientable Manifolds

V. Z. Grinesa, E. V. Zhuzhomab, V. S. Medvedevc

a Nizhnii Novgorod State Agricultural Academy
b Nizhny Novgorod State Technical University
c Research Institute for Applied Mathematics and Cybernetics, N. I. Lobachevski State University of Nizhnii Novgorod
References:
Abstract: We study Morse–Smale diffeomorphisms of n-manifolds with four periodic points which are the only periodic points. We prove that for $n= 3$ these diffeomorphisms are gradient-like and define a class of diffeomorphisms inevitably possessing a nonclosed heteroclinic curve. For $n\ge4$, we construct a complete conjugacy invariant in the class of diffeomorphisms with a single saddle of codimension one.
Received: 12.09.2001
Revised: 22.05.2002
English version:
Mathematical Notes, 2003, Volume 74, Issue 3, Pages 352–366
DOI: https://doi.org/10.1023/A:1026154718469
Bibliographic databases:
UDC: 517.9+513.83
Language: Russian
Citation: V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, “On Morse–Smale Diffeomorphisms with Four Periodic Points on Closed Orientable Manifolds”, Mat. Zametki, 74:3 (2003), 369–386; Math. Notes, 74:3 (2003), 352–366
Citation in format AMSBIB
\Bibitem{GriZhuMed03}
\by V.~Z.~Grines, E.~V.~Zhuzhoma, V.~S.~Medvedev
\paper On Morse--Smale Diffeomorphisms with Four Periodic Points on Closed Orientable Manifolds
\jour Mat. Zametki
\yr 2003
\vol 74
\issue 3
\pages 369--386
\mathnet{http://mi.mathnet.ru/mzm271}
\crossref{https://doi.org/10.4213/mzm271}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2022501}
\zmath{https://zbmath.org/?q=an:1062.37017}
\transl
\jour Math. Notes
\yr 2003
\vol 74
\issue 3
\pages 352--366
\crossref{https://doi.org/10.1023/A:1026154718469}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000186455400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0347755358}
Linking options:
  • https://www.mathnet.ru/eng/mzm271
  • https://doi.org/10.4213/mzm271
  • https://www.mathnet.ru/eng/mzm/v74/i3/p369
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:486
    Full-text PDF :206
    References:64
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024