Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 79, Issue 2, Pages 294–308
DOI: https://doi.org/10.4213/mzm2697
(Mi mzm2697)
 

This article is cited in 4 scientific papers (total in 4 papers)

Stability of Unique Solvability in an Ill-Posed Dirichlet Problem

I. G. Tsar'kov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (230 kB) Citations (4)
References:
Abstract: Suppose that $\Omega\subset\mathbb R^n$ is a compact domain with Lipschitz boundary $\partial\Omega$ which is the closure of its interior $\Omega_0$. Consider functions $\phi_i,\tau_i\colon\Omega\to\mathbb R$ belonging to the space $L_q(\Omega)$ for $q\in(1,+\infty]$ and a locally Holder mapping $F\colon\Omega\times\mathbb R\to\mathbb R$ such that $F(\,\cdot\,,0)\equiv0$ on $\Omega$. Consider two quasilinear inhomogeneous Dirichlet problems
$$ \begin{cases} \Delta u_i=F(x,u_i)+\phi_i(x) & \text{on $\Omega_0$}, \\ u=\tau_i & \text{on $\partial\Omega$}, \end{cases} \qquad i=1,2. $$
In this paper, we study the following problem: Under certain conditions on the function $F$ generally not ensuring either the uniqueness or the existence of solutions in these problems, estimate the deviation of the solutions $u_i$ (assuming that they exist) from each other in the uniform metric, using additional information about the solutions $u_i$ . Here we assume that the solutions are continuous, although their continuity is a consequence of the constraints imposed on $F$, $\tau_i$$\phi_i$. For the additional information on the solutions $u_i$, $i=1,2$ we take their values on the grid; in particular, we show that if their values are identical on some finite grid, then these functions coincide on $\Omega$.
Received: 13.11.2003
English version:
Mathematical Notes, 2006, Volume 79, Issue 2, Pages 268–282
DOI: https://doi.org/10.1007/s11006-006-0030-x
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: I. G. Tsar'kov, “Stability of Unique Solvability in an Ill-Posed Dirichlet Problem”, Mat. Zametki, 79:2 (2006), 294–308; Math. Notes, 79:2 (2006), 268–282
Citation in format AMSBIB
\Bibitem{Tsa06}
\by I.~G.~Tsar'kov
\paper Stability of Unique Solvability in an Ill-Posed Dirichlet Problem
\jour Mat. Zametki
\yr 2006
\vol 79
\issue 2
\pages 294--308
\mathnet{http://mi.mathnet.ru/mzm2697}
\crossref{https://doi.org/10.4213/mzm2697}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2249118}
\zmath{https://zbmath.org/?q=an:1136.35100}
\elib{https://elibrary.ru/item.asp?id=9218886}
\transl
\jour Math. Notes
\yr 2006
\vol 79
\issue 2
\pages 268--282
\crossref{https://doi.org/10.1007/s11006-006-0030-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235913800030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31844455161}
Linking options:
  • https://www.mathnet.ru/eng/mzm2697
  • https://doi.org/10.4213/mzm2697
  • https://www.mathnet.ru/eng/mzm/v79/i2/p294
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:493
    Full-text PDF :221
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024