|
This article is cited in 2 scientific papers (total in 2 papers)
Continuation of separately analytic functions defined on part of the domain boundary
A. S. Sadullaev, S. A. Imomkulov Al-Kharezmi Urgench State University, Khorezm, Uzbekistan
Abstract:
Let $D\subset\mathbb C^n$ be a domain with smooth boundary $\partial D$, let $E\subset\partial D$ be a subset of positive Lebesgue measure $\operatorname{mes}(E)>0$, and let $F\subset G$ be a nonpluripolar compact set in a strongly pseudoconvex domain $G\subset\mathbb C^m$. We prove that, under an additional condition, each function separately analytic on the set $X=(D\times F)\cup(E\times G)$ has a holomorphic contination to the domain $\widehat X=\{(z,w)\in D\times G:\omega_{\mathrm{in}}^*(z,E,D)+\omega^*(w,F,G)<1\}$, where $\omega^*$ is the $P$-measure and $\omega^*_{\mathrm{in}}$ is the interior $P$-measure.
Received: 04.04.2005
Citation:
A. S. Sadullaev, S. A. Imomkulov, “Continuation of separately analytic functions defined on part of the domain boundary”, Mat. Zametki, 79:2 (2006), 234–243; Math. Notes, 79:2 (2006), 215–223
Linking options:
https://www.mathnet.ru/eng/mzm2692https://doi.org/10.4213/mzm2692 https://www.mathnet.ru/eng/mzm/v79/i2/p234
|
Statistics & downloads: |
Abstract page: | 337 | Full-text PDF : | 177 | References: | 60 | First page: | 3 |
|