Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 79, Issue 2, Pages 234–243
DOI: https://doi.org/10.4213/mzm2692
(Mi mzm2692)
 

This article is cited in 2 scientific papers (total in 2 papers)

Continuation of separately analytic functions defined on part of the domain boundary

A. S. Sadullaev, S. A. Imomkulov

Al-Kharezmi Urgench State University, Khorezm, Uzbekistan
Full-text PDF (230 kB) Citations (2)
References:
Abstract: Let $D\subset\mathbb C^n$ be a domain with smooth boundary $\partial D$, let $E\subset\partial D$ be a subset of positive Lebesgue measure $\operatorname{mes}(E)>0$, and let $F\subset G$ be a nonpluripolar compact set in a strongly pseudoconvex domain $G\subset\mathbb C^m$. We prove that, under an additional condition, each function separately analytic on the set $X=(D\times F)\cup(E\times G)$ has a holomorphic contination to the domain $\widehat X=\{(z,w)\in D\times G:\omega_{\mathrm{in}}^*(z,E,D)+\omega^*(w,F,G)<1\}$, where $\omega^*$ is the $P$-measure and $\omega^*_{\mathrm{in}}$ is the interior $P$-measure.
Received: 04.04.2005
English version:
Mathematical Notes, 2006, Volume 79, Issue 2, Pages 215–223
DOI: https://doi.org/10.1007/s11006-006-0024-8
Bibliographic databases:
UDC: 517.55
Language: Russian
Citation: A. S. Sadullaev, S. A. Imomkulov, “Continuation of separately analytic functions defined on part of the domain boundary”, Mat. Zametki, 79:2 (2006), 234–243; Math. Notes, 79:2 (2006), 215–223
Citation in format AMSBIB
\Bibitem{SadImo06}
\by A.~S.~Sadullaev, S.~A.~Imomkulov
\paper Continuation of separately analytic functions defined on part of the domain boundary
\jour Mat. Zametki
\yr 2006
\vol 79
\issue 2
\pages 234--243
\mathnet{http://mi.mathnet.ru/mzm2692}
\crossref{https://doi.org/10.4213/mzm2692}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2249112}
\zmath{https://zbmath.org/?q=an:1133.32003}
\elib{https://elibrary.ru/item.asp?id=9218880}
\transl
\jour Math. Notes
\yr 2006
\vol 79
\issue 2
\pages 215--223
\crossref{https://doi.org/10.1007/s11006-006-0024-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235913800024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31844447197}
Linking options:
  • https://www.mathnet.ru/eng/mzm2692
  • https://doi.org/10.4213/mzm2692
  • https://www.mathnet.ru/eng/mzm/v79/i2/p234
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:328
    Full-text PDF :176
    References:59
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024