|
Estimates for the Eigenvalues of Matrices
R. I. Alidemaa, A. F. Filippovb a University of Prishtina
b M. V. Lomonosov Moscow State University
Abstract:
For matrices whose eigenvalues are real (such as Hermitian or real symmetric matrices), we derive simple explicit estimates for the maximal $(\lambda_{\max})$ and the minimal $(\lambda_{\min})$ eigenvalues in terms of determinants of order less than 3. For $3\times3$ matrices, we derive sharper estimates, which use $\det A$ but do not require to solve cubic equations.
Received: 13.09.2004
Citation:
R. I. Alidema, A. F. Filippov, “Estimates for the Eigenvalues of Matrices”, Mat. Zametki, 79:2 (2006), 169–177; Math. Notes, 79:2 (2006), 157–164
Linking options:
https://www.mathnet.ru/eng/mzm2687https://doi.org/10.4213/mzm2687 https://www.mathnet.ru/eng/mzm/v79/i2/p169
|
Statistics & downloads: |
Abstract page: | 1237 | Full-text PDF : | 536 | References: | 70 | First page: | 2 |
|