Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 79, Issue 1, Pages 120–126
DOI: https://doi.org/10.4213/mzm2680
(Mi mzm2680)
 

This article is cited in 2 scientific papers (total in 2 papers)

Equivalence of Two Sets of Transition Points Corresponding to Solutions with Interior Transition Layers

Ni Ming Kanga, A. B. Vasil'evab, M. G. Dmitrievc

a East China Normal University
b M. V. Lomonosov Moscow State University
c Russian State Social University
Full-text PDF (159 kB) Citations (2)
References:
Abstract: We establish the equivalence of two sets of transition points corresponding to solutions of singularly perturbed boundary-value problems with interior boundary layers. The first set appears in the formalism for constructing the asymptotics of the solution of a boundary-value problem and the second, in the direct scheme formalism for constructing the asymptotics of the solution of a variational problem.
Received: 16.05.2003
Revised: 15.11.2004
English version:
Mathematical Notes, 2006, Volume 79, Issue 1, Pages 109–115
DOI: https://doi.org/10.1007/s11006-006-0010-1
Bibliographic databases:
UDC: 517.97
Language: Russian
Citation: Ni Ming Kang, A. B. Vasil'eva, M. G. Dmitriev, “Equivalence of Two Sets of Transition Points Corresponding to Solutions with Interior Transition Layers”, Mat. Zametki, 79:1 (2006), 120–126; Math. Notes, 79:1 (2006), 109–115
Citation in format AMSBIB
\Bibitem{NiVasDmi06}
\by Ni Ming Kang, A.~B.~Vasil'eva, M.~G.~Dmitriev
\paper Equivalence of Two Sets of Transition Points Corresponding to Solutions with Interior Transition Layers
\jour Mat. Zametki
\yr 2006
\vol 79
\issue 1
\pages 120--126
\mathnet{http://mi.mathnet.ru/mzm2680}
\crossref{https://doi.org/10.4213/mzm2680}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2252140}
\zmath{https://zbmath.org/?q=an:05242156}
\elib{https://elibrary.ru/item.asp?id=9210512}
\transl
\jour Math. Notes
\yr 2006
\vol 79
\issue 1
\pages 109--115
\crossref{https://doi.org/10.1007/s11006-006-0010-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235913800010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31844454790}
Linking options:
  • https://www.mathnet.ru/eng/mzm2680
  • https://doi.org/10.4213/mzm2680
  • https://www.mathnet.ru/eng/mzm/v79/i1/p120
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024