|
This article is cited in 4 scientific papers (total in 4 papers)
On Critical $\omega$-Fan Formations of Finite Groups
M. A. Korpacheva, M. M. Sorokina I. G. Petrovsky Bryansk State University
Abstract:
We consider finite groups only. Let $\omega$ be a nonempty subset of the set $P$ of all primes, and let $f\colon\omega\cup\{\omega'\}\to\{$formations of groups$\}$ and $\delta\colon P\to\{$nonempty Fitting formations of groups$\}$ be some functions. The formation consisting of all groups $G$ such that $G/O_\omega(G)\in f(\omega')$ and $G/G_{\delta(p)}\in f(p)$ for any $p\in\omega\cap\pi(G)$ is referred to as an $\omega$-fan formation with direction $\delta$. Let $\mathfrak H$ be some class of groups; an $\omega$-fan formation $\mathfrak F$ with direction $\delta$ is said to be an $\mathfrak H_{\omega\delta}$-critical formation if $\mathfrak F\nsubseteq\mathfrak H$ and any proper $\omega$-fan subformation with direction $\delta$ in $\mathfrak F$ is contained in the class $\mathfrak H$. In the paper, a description of the structure of the $\mathfrak H_{\omega\delta}$-critical formations is presented.
Received: 18.05.2004 Revised: 10.02.2005
Citation:
M. A. Korpacheva, M. M. Sorokina, “On Critical $\omega$-Fan Formations of Finite Groups”, Mat. Zametki, 79:1 (2006), 87–94; Math. Notes, 79:1 (2006), 79–85
Linking options:
https://www.mathnet.ru/eng/mzm2676https://doi.org/10.4213/mzm2676 https://www.mathnet.ru/eng/mzm/v79/i1/p87
|
|