Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 79, Issue 1, Pages 60–86
DOI: https://doi.org/10.4213/mzm2674
(Mi mzm2674)
 

This article is cited in 19 scientific papers (total in 19 papers)

Weakly Convex Sets and Their Properties

G. E. Ivanov

Moscow Institute of Physics and Technology
References:
Abstract: In this paper, the notion of a weakly convex set is introduced. Sharp estimates for the weak convexity constants of the sum and difference of such sets are given. It is proved that, in Hilbert space, the smoothness of a set is equivalent to the weak convexity of the set and its complement. Here, by definition, the smoothness of a set means that the field of unit outward normal vectors is defined on the boundary of the set; this vector field satisfies the Lipschitz condition. We obtain the minimax theorem for a class of problems with smooth Lebesgue sets of the goal function and strongly convex constraints. As an application of the results obtained, we prove the alternative theorem for program strategies in a linear differential quality game.
Received: 16.01.2004
English version:
Mathematical Notes, 2006, Volume 79, Issue 1, Pages 55–78
DOI: https://doi.org/10.1007/s11006-006-0005-y
Bibliographic databases:
UDC: 517.982.252+517.978.2
Language: Russian
Citation: G. E. Ivanov, “Weakly Convex Sets and Their Properties”, Mat. Zametki, 79:1 (2006), 60–86; Math. Notes, 79:1 (2006), 55–78
Citation in format AMSBIB
\Bibitem{Iva06}
\by G.~E.~Ivanov
\paper Weakly Convex Sets and Their Properties
\jour Mat. Zametki
\yr 2006
\vol 79
\issue 1
\pages 60--86
\mathnet{http://mi.mathnet.ru/mzm2674}
\crossref{https://doi.org/10.4213/mzm2674}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2252135}
\zmath{https://zbmath.org/?q=an:1135.52301}
\elib{https://elibrary.ru/item.asp?id=9210507}
\transl
\jour Math. Notes
\yr 2006
\vol 79
\issue 1
\pages 55--78
\crossref{https://doi.org/10.1007/s11006-006-0005-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235913800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31844437663}
Linking options:
  • https://www.mathnet.ru/eng/mzm2674
  • https://doi.org/10.4213/mzm2674
  • https://www.mathnet.ru/eng/mzm/v79/i1/p60
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:977
    Full-text PDF :398
    References:51
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024