Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 78, Issue 6, Pages 813–826
DOI: https://doi.org/10.4213/mzm2655
(Mi mzm2655)
 

This article is cited in 22 scientific papers (total in 22 papers)

On Surface Attractors and Repellers in 3-Manifolds

V. Z. Grinesa, V. S. Medvedevb, E. V. Zhuzhomac

a Nizhnii Novgorod State Agricultural Academy
b Research Institute for Applied Mathematics and Cybernetics, N. I. Lobachevski State University of Nizhnii Novgorod
c Nizhny Novgorod State Technical University
References:
Abstract: We show that if $f\colon M^3\to M^3$ is an $A$ diffeomorphism with a surface two-dimensional attractor or repeller $\mathscr B$ with support $M^2_{\mathscr B}$, then $\mathscr B=M^2_{\mathscr B}$ and there exists a $k\ge1$ such that
  • 1) $M^2_{\mathscr B}$ is the disjoint union $M^2_1\cup\dots\cup M^2_k$ of tame surfaces such that each surface $M^2_i$ is homeomorphic to the 2-torus $T^2$;
  • 2) the restriction of $f^k$ to $M^2_i$, $i\in\{1,\dots,k\}$, is conjugate to an Anosov diffeomorphism of the torus $T^2$.
Received: 07.02.2005
English version:
Mathematical Notes, 2005, Volume 78, Issue 6, Pages 757–767
DOI: https://doi.org/10.1007/s11006-005-0181-1
Bibliographic databases:
UDC: 513.83+517.9
Language: Russian
Citation: V. Z. Grines, V. S. Medvedev, E. V. Zhuzhoma, “On Surface Attractors and Repellers in 3-Manifolds”, Mat. Zametki, 78:6 (2005), 813–826; Math. Notes, 78:6 (2005), 757–767
Citation in format AMSBIB
\Bibitem{GriMedZhu05}
\by V.~Z.~Grines, V.~S.~Medvedev, E.~V.~Zhuzhoma
\paper On Surface Attractors and Repellers in 3-Manifolds
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 6
\pages 813--826
\mathnet{http://mi.mathnet.ru/mzm2655}
\crossref{https://doi.org/10.4213/mzm2655}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2249032}
\zmath{https://zbmath.org/?q=an:1107.37024}
\elib{https://elibrary.ru/item.asp?id=9155906}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 6
\pages 757--767
\crossref{https://doi.org/10.1007/s11006-005-0181-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234150200019}
\elib{https://elibrary.ru/item.asp?id=14698390}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-28644451403}
Linking options:
  • https://www.mathnet.ru/eng/mzm2655
  • https://doi.org/10.4213/mzm2655
  • https://www.mathnet.ru/eng/mzm/v78/i6/p813
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:540
    Full-text PDF :245
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024