Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 78, Issue 6, Pages 803–812
DOI: https://doi.org/10.4213/mzm2654
(Mi mzm2654)
 

This article is cited in 1 scientific paper (total in 1 paper)

Antinilpotent Lie Algebras

V. V. Gorbatsevich

Moscow State Aviation Technological University
Full-text PDF (190 kB) Citations (1)
References:
Abstract: The class of antinilpotent Lie algebras closely related to the problem of constructing solutions with constant coefficients for the Yang–Mills equation is considered. A complete description of the antinilpotent Lie algebras is given. A Lie algebra is said to be antinilpotent if any of its nilpotent subalgebras is Abelian. The Yang-Mills equation with coefficients in a Lie algebra $L$ has nontrivial solutions with constant coefficients if and only if the Lie algebra $L$ is not antinilpotent. In Theorem 1, a description of all semisimple real antinilpotent Lie algebras is given. In Theorem 2, the problem of describing the antinilpotent Lie algebras is completely reduced to the case of semisimple Lie algebras (treated in Theorem 1) and solvable Lie algebras. The description of solvable antinilpotent Lie algebras is given in Theorem 3.
Received: 14.12.2004
English version:
Mathematical Notes, 2005, Volume 78, Issue 6, Pages 749–756
DOI: https://doi.org/10.1007/s11006-005-0180-2
Bibliographic databases:
UDC: 512.554.3
Language: Russian
Citation: V. V. Gorbatsevich, “Antinilpotent Lie Algebras”, Mat. Zametki, 78:6 (2005), 803–812; Math. Notes, 78:6 (2005), 749–756
Citation in format AMSBIB
\Bibitem{Gor05}
\by V.~V.~Gorbatsevich
\paper Antinilpotent Lie Algebras
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 6
\pages 803--812
\mathnet{http://mi.mathnet.ru/mzm2654}
\crossref{https://doi.org/10.4213/mzm2654}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2249031}
\zmath{https://zbmath.org/?q=an:1121.17005}
\elib{https://elibrary.ru/item.asp?id=9155905}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 6
\pages 749--756
\crossref{https://doi.org/10.1007/s11006-005-0180-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234150200018}
\elib{https://elibrary.ru/item.asp?id=13474115}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-28644445891}
Linking options:
  • https://www.mathnet.ru/eng/mzm2654
  • https://doi.org/10.4213/mzm2654
  • https://www.mathnet.ru/eng/mzm/v78/i6/p803
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:321
    Full-text PDF :195
    References:50
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024