Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 78, Issue 5, Pages 763–772
DOI: https://doi.org/10.4213/mzm2632
(Mi mzm2632)
 

This article is cited in 8 scientific papers (total in 8 papers)

Approximation from Above of Systems of Differential Inclusions with Non-Lipschitzian Right-Hand Side

E. V. Sokolovskaya, O. P. Filatov

Samara State University
Full-text PDF (222 kB) Citations (8)
References:
Abstract: Suppose that $\mathbb R^n$ is the $p$-dimensional space with Euclidean norm ${\|\cdot\|}$, $K(\mathbb R^p)$ is the set of nonempty compact sets in $\mathbb R^p$, $\mathbb R_+=0,+\infty)$, $D=\mathbb R_+\times\mathbb R^m\times\mathbb R^n\times[0,a]$, $D_0=\mathbb R_+\times\mathbb R^m$, $F_0\colon D_0\to K(\mathbb R^m)$, and $\operatorname{co}F_0$ is the convex cover of the mapping $F_0$. We consider the Cauchy problem for the system of differential inclusions
$$ \dot x\in\mu F(t,x,y,\mu),\quad \dot y\in G(t,x,y,\mu),\qquad x(0)=x_0,\quad y(0)=y_0 $$
with slow $x$ and fast $y$ variables; here $F\colon D\to K(\mathbb R^m)$, $G\colon D\to K(\mathbb R^n)$, and $\mu\in[0,a]$ is a small parameter. It is assumed that this problem has at least one solution on $[0,1/\mu]$ for all sufficiently small $\mu\in[0,a]$. Under certain conditions on $F$, $G$, and $F_0$, comprising both the usual conditions for approximation problems and some new ones (which are weaker than the Lipschitz property), it is proved that, for any $\varepsilon>0$, there is a $\mu_0>0$ such that for any $\mu\in(0,\mu_0]$ and any solution $(x_\mu(t),y_\mu(t))$ of the problem under consideration, there exists a solution $u_\mu(t)$ of the problem $\dot u\in\mu\operatorname{co}F_0(t,u)$, $u(0)=x_0$ for which the inequality $\|x_\mu(t)-u_\mu(t)\|<\varepsilon$ holds for each $t\in[0,1/\mu]$.
Received: 04.06.2004
English version:
Mathematical Notes, 2005, Volume 78, Issue 5, Pages 709–718
DOI: https://doi.org/10.1007/s11006-005-0174-0
Bibliographic databases:
UDC: 517.928
Language: Russian
Citation: E. V. Sokolovskaya, O. P. Filatov, “Approximation from Above of Systems of Differential Inclusions with Non-Lipschitzian Right-Hand Side”, Mat. Zametki, 78:5 (2005), 763–772; Math. Notes, 78:5 (2005), 709–718
Citation in format AMSBIB
\Bibitem{SokFil05}
\by E.~V.~Sokolovskaya, O.~P.~Filatov
\paper Approximation from Above of Systems of Differential Inclusions with Non-Lipschitzian Right-Hand Side
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 5
\pages 763--772
\mathnet{http://mi.mathnet.ru/mzm2632}
\crossref{https://doi.org/10.4213/mzm2632}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2252956}
\zmath{https://zbmath.org/?q=an:1124.34003}
\elib{https://elibrary.ru/item.asp?id=9173132}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 5
\pages 709--718
\crossref{https://doi.org/10.1007/s11006-005-0174-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234150200012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-28644448734}
Linking options:
  • https://www.mathnet.ru/eng/mzm2632
  • https://doi.org/10.4213/mzm2632
  • https://www.mathnet.ru/eng/mzm/v78/i5/p763
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:410
    Full-text PDF :202
    References:70
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024