Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 78, Issue 5, Pages 658–675
DOI: https://doi.org/10.4213/mzm2630
(Mi mzm2630)
 

This article is cited in 10 scientific papers (total in 10 papers)

Embedded Spaces of Trigonometric Splines and Their Wavelet Expansion

Yu. K. Dem'yanovich

Saint-Petersburg State University
References:
Abstract: With each infinite grid $X:\dots<x_{-1}<x_0<x_1<\dotsb$ we associate the system of trigonometric splines $\{\mathfrak T_j^B\}$ of class $C^1(\alpha,\beta)$, the linear space $\mathscr T^B(X)\overset{\textrm{def}}=\{\tilde u\mid\tilde u=\sum_jc_j\mathfrak T_j^B\ \forall\,c_j\in\mathbb R^1\}$, and the functionals $g^{(i)}\in(C^1(\alpha,\beta))^*$ with the biorthogonality property: $\langle g^{(i)},\mathfrak T_j^B\rangle=\delta_{i,j}$ (here $\alpha\overset{\textrm{def}}=\lim_{j\to-\infty}x_j$, $\beta\overset{\textrm{def}}=\lim_{j\to+\infty}x_j$). For nested grids $\overline X\subset X$, we show that the corresponding spaces $\mathscr T^B(\overline X)\subset\mathscr T^B(X)$ are embedded in $\mathscr T^B(X)$ and obtain decomposition and reconstruction formulas for the spline-wavelet expansion $\mathscr T^B(X)=\mathscr T^B(\overline X)\dotplus W$ derived with the help of the system of functionals indicated above.
Received: 25.08.2004
English version:
Mathematical Notes, 2005, Volume 78, Issue 5, Pages 615–630
DOI: https://doi.org/10.1007/s11006-005-0165-1
Bibliographic databases:
UDC: 518
Language: Russian
Citation: Yu. K. Dem'yanovich, “Embedded Spaces of Trigonometric Splines and Their Wavelet Expansion”, Mat. Zametki, 78:5 (2005), 658–675; Math. Notes, 78:5 (2005), 615–630
Citation in format AMSBIB
\Bibitem{Dem05}
\by Yu.~K.~Dem'yanovich
\paper Embedded Spaces of Trigonometric Splines and Their Wavelet Expansion
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 5
\pages 658--675
\mathnet{http://mi.mathnet.ru/mzm2630}
\crossref{https://doi.org/10.4213/mzm2630}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2252947}
\zmath{https://zbmath.org/?q=an:1184.41008}
\elib{https://elibrary.ru/item.asp?id=9173123}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 5
\pages 615--630
\crossref{https://doi.org/10.1007/s11006-005-0165-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234150200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-28644443330}
Linking options:
  • https://www.mathnet.ru/eng/mzm2630
  • https://doi.org/10.4213/mzm2630
  • https://www.mathnet.ru/eng/mzm/v78/i5/p658
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:454
    Full-text PDF :180
    References:83
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024