|
This article is cited in 10 scientific papers (total in 10 papers)
Embedded Spaces of Trigonometric Splines and Their Wavelet Expansion
Yu. K. Dem'yanovich Saint-Petersburg State University
Abstract:
With each infinite grid $X:\dots<x_{-1}<x_0<x_1<\dotsb$ we associate the system of trigonometric splines $\{\mathfrak T_j^B\}$ of class $C^1(\alpha,\beta)$, the linear space
$\mathscr T^B(X)\overset{\textrm{def}}=\{\tilde u\mid\tilde u=\sum_jc_j\mathfrak T_j^B\ \forall\,c_j\in\mathbb R^1\}$, and the functionals $g^{(i)}\in(C^1(\alpha,\beta))^*$ with the biorthogonality property: $\langle g^{(i)},\mathfrak T_j^B\rangle=\delta_{i,j}$ (here $\alpha\overset{\textrm{def}}=\lim_{j\to-\infty}x_j$, $\beta\overset{\textrm{def}}=\lim_{j\to+\infty}x_j$). For nested grids $\overline X\subset X$, we show that the corresponding spaces $\mathscr T^B(\overline X)\subset\mathscr T^B(X)$ are embedded in $\mathscr T^B(X)$ and obtain decomposition and reconstruction formulas for the spline-wavelet expansion $\mathscr T^B(X)=\mathscr T^B(\overline X)\dotplus W$ derived with the help of the system of functionals indicated above.
Received: 25.08.2004
Citation:
Yu. K. Dem'yanovich, “Embedded Spaces of Trigonometric Splines and Their Wavelet Expansion”, Mat. Zametki, 78:5 (2005), 658–675; Math. Notes, 78:5 (2005), 615–630
Linking options:
https://www.mathnet.ru/eng/mzm2630https://doi.org/10.4213/mzm2630 https://www.mathnet.ru/eng/mzm/v78/i5/p658
|
Statistics & downloads: |
Abstract page: | 454 | Full-text PDF : | 180 | References: | 83 | First page: | 3 |
|