Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 78, Issue 5, Pages 658–675
DOI: https://doi.org/10.4213/mzm2630
(Mi mzm2630)
 

This article is cited in 10 scientific papers (total in 10 papers)

Embedded Spaces of Trigonometric Splines and Their Wavelet Expansion

Yu. K. Dem'yanovich

Saint-Petersburg State University
References:
Abstract: With each infinite grid $X:\dots<x_{-1}<x_0<x_1<\dotsb$ we associate the system of trigonometric splines $\{\mathfrak T_j^B\}$ of class $C^1(\alpha,\beta)$, the linear space $\mathscr T^B(X)\overset{\textrm{def}}=\{\tilde u\mid\tilde u=\sum_jc_j\mathfrak T_j^B\ \forall\,c_j\in\mathbb R^1\}$, and the functionals $g^{(i)}\in(C^1(\alpha,\beta))^*$ with the biorthogonality property: $\langle g^{(i)},\mathfrak T_j^B\rangle=\delta_{i,j}$ (here $\alpha\overset{\textrm{def}}=\lim_{j\to-\infty}x_j$, $\beta\overset{\textrm{def}}=\lim_{j\to+\infty}x_j$). For nested grids $\overline X\subset X$, we show that the corresponding spaces $\mathscr T^B(\overline X)\subset\mathscr T^B(X)$ are embedded in $\mathscr T^B(X)$ and obtain decomposition and reconstruction formulas for the spline-wavelet expansion $\mathscr T^B(X)=\mathscr T^B(\overline X)\dotplus W$ derived with the help of the system of functionals indicated above.
Received: 25.08.2004
English version:
Mathematical Notes, 2005, Volume 78, Issue 5, Pages 615–630
DOI: https://doi.org/10.1007/s11006-005-0165-1
Bibliographic databases:
UDC: 518
Language: Russian
Citation: Yu. K. Dem'yanovich, “Embedded Spaces of Trigonometric Splines and Their Wavelet Expansion”, Mat. Zametki, 78:5 (2005), 658–675; Math. Notes, 78:5 (2005), 615–630
Citation in format AMSBIB
\Bibitem{Dem05}
\by Yu.~K.~Dem'yanovich
\paper Embedded Spaces of Trigonometric Splines and Their Wavelet Expansion
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 5
\pages 658--675
\mathnet{http://mi.mathnet.ru/mzm2630}
\crossref{https://doi.org/10.4213/mzm2630}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2252947}
\zmath{https://zbmath.org/?q=an:1184.41008}
\elib{https://elibrary.ru/item.asp?id=9173123}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 5
\pages 615--630
\crossref{https://doi.org/10.1007/s11006-005-0165-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234150200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-28644443330}
Linking options:
  • https://www.mathnet.ru/eng/mzm2630
  • https://doi.org/10.4213/mzm2630
  • https://www.mathnet.ru/eng/mzm/v78/i5/p658
  • This publication is cited in the following 10 articles:
    1. I. G. Burova, Yu. K. Demyanovich, A. N. Terekhov, A. Yu. Altynova, A. D. Satanovskiy, A. A. Babushkin, “Image Compression and Enlargement Algorithms”, International Journal of Circuits, Systems and Signal Processing, 15 (2021), 836  crossref
    2. E. K. Kulikov, A. A. Makarov, “On Approximation by Hyperbolic Splines”, J Math Sci, 240:6 (2019), 822  crossref
    3. E. K. Kulikov, A. A. Makarov, “Ob approksimatsii giperbolicheskimi splainami”, Chislennye metody i voprosy organizatsii vychislenii. XXXI, Zap. nauchn. sem. POMI, 472, POMI, SPb., 2018, 179–194  mathnet
    4. Kosogorov O., Makarov A., “On Some Piecewise Quadratic Spline Functions”, Numerical Analysis and Its Applications (NAA 2016), Lecture Notes in Computer Science, 10187, eds. Dimov I., Farago I., Vulkov L., Springer International Publishing Ag, 2017, 448–455  crossref  mathscinet  zmath  isi  scopus  scopus
    5. Dem'yanovich Yu.K., Makarov A.A., “Necessary and Sufficient Nonnegativity Conditions For Second-Order Coordinate Trigonometric Splines”, Vestnik St. Petersburg Univ. Math., 50:1 (2017), 5–10  crossref  mathscinet  zmath  isi  scopus  scopus
    6. Yu. K. Dem'yanovich, E. S. Kovtunenko, T. A. Safonova, “Existence and Uniqueness of Spaces of Splines of Maximal Pseudosmoothness”, J Math Sci, 224:5 (2017), 647  crossref
    7. Yu. K. Dem'yanovich, O. N. Ivantsova, V. A. Khodakovskii, “Positivity of Minimal Coordinate Splines”, J Math Sci, 219:6 (2016), 936  crossref
    8. Yu. K. Dem'yanovich, “The Uniqueness of a Space of Smooth Splines and Calibration Relations”, J Math Sci, 193:2 (2013), 249  crossref
    9. Yu. K. Dem'yanovich, A. V. Zimin, “Wavelet decompositions on a manifold”, J. Math. Sci. (N. Y.), 150:2 (2008), 1929–1936  mathnet  mathnet  crossref  scopus
    10. Yu. K. Dem'yanovich, “Local wavelet basis for an irregular grid”, J. Math. Sci. (N. Y.), 141:6 (2007), 1618–1632  mathnet  crossref  mathscinet  zmath  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:477
    Full-text PDF :185
    References:90
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025