Abstract:
With each infinite grid $X:\dots<x_{-1}<x_0<x_1<\dotsb$ we associate the system of trigonometric splines $\{\mathfrak T_j^B\}$ of class $C^1(\alpha,\beta)$, the linear space
$\mathscr T^B(X)\overset{\textrm{def}}=\{\tilde u\mid\tilde u=\sum_jc_j\mathfrak T_j^B\ \forall\,c_j\in\mathbb R^1\}$, and the functionals $g^{(i)}\in(C^1(\alpha,\beta))^*$ with the biorthogonality property: $\langle g^{(i)},\mathfrak T_j^B\rangle=\delta_{i,j}$ (here $\alpha\overset{\textrm{def}}=\lim_{j\to-\infty}x_j$, $\beta\overset{\textrm{def}}=\lim_{j\to+\infty}x_j$). For nested grids $\overline X\subset X$, we show that the corresponding spaces $\mathscr T^B(\overline X)\subset\mathscr T^B(X)$ are embedded in $\mathscr T^B(X)$ and obtain decomposition and reconstruction formulas for the spline-wavelet expansion $\mathscr T^B(X)=\mathscr T^B(\overline X)\dotplus W$ derived with the help of the system of functionals indicated above.
This publication is cited in the following 10 articles:
I. G. Burova, Yu. K. Demyanovich, A. N. Terekhov, A. Yu. Altynova, A. D. Satanovskiy, A. A. Babushkin, “Image Compression and Enlargement Algorithms”, International Journal of Circuits, Systems and Signal Processing, 15 (2021), 836
E. K. Kulikov, A. A. Makarov, “On Approximation by Hyperbolic Splines”, J Math Sci, 240:6 (2019), 822
E. K. Kulikov, A. A. Makarov, “Ob approksimatsii giperbolicheskimi splainami”, Chislennye metody i voprosy organizatsii vychislenii. XXXI, Zap. nauchn. sem. POMI, 472, POMI, SPb., 2018, 179–194
Kosogorov O., Makarov A., “On Some Piecewise Quadratic Spline Functions”, Numerical Analysis and Its Applications (NAA 2016), Lecture Notes in Computer Science, 10187, eds. Dimov I., Farago I., Vulkov L., Springer International Publishing Ag, 2017, 448–455
Dem'yanovich Yu.K., Makarov A.A., “Necessary and Sufficient Nonnegativity Conditions For Second-Order Coordinate Trigonometric Splines”, Vestnik St. Petersburg Univ. Math., 50:1 (2017), 5–10
Yu. K. Dem'yanovich, E. S. Kovtunenko, T. A. Safonova, “Existence and Uniqueness of Spaces of Splines of Maximal Pseudosmoothness”, J Math Sci, 224:5 (2017), 647
Yu. K. Dem'yanovich, O. N. Ivantsova, V. A. Khodakovskii, “Positivity of Minimal Coordinate Splines”, J Math Sci, 219:6 (2016), 936
Yu. K. Dem'yanovich, “The Uniqueness of a Space of Smooth Splines and Calibration Relations”, J Math Sci, 193:2 (2013), 249
Yu. K. Dem'yanovich, A. V. Zimin, “Wavelet decompositions on a manifold”, J. Math. Sci. (N. Y.), 150:2 (2008), 1929–1936
Yu. K. Dem'yanovich, “Local wavelet basis for an irregular grid”, J. Math. Sci. (N. Y.), 141:6 (2007), 1618–1632