|
This article is cited in 14 scientific papers (total in 14 papers)
Linear and Algebraic Independence of $q$-Zeta Values
Yu. A. Pupyrev M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
In the paper, results on linear and algebraic independence of $q$-series of the form $\zeta_q(s)=\sum_{n=1}^\infty\sigma_{s-1}(n)q^n$ over the field $\mathbb C(q)$ are obtained, where $\sigma_{s-1}(n)=\sum_{d\mid n}d^{s-1}$, $s=1,2,\dots$.
Received: 04.04.2005
Citation:
Yu. A. Pupyrev, “Linear and Algebraic Independence of $q$-Zeta Values”, Mat. Zametki, 78:4 (2005), 608–613; Math. Notes, 78:4 (2005), 563–568
Linking options:
https://www.mathnet.ru/eng/mzm2619https://doi.org/10.4213/mzm2619 https://www.mathnet.ru/eng/mzm/v78/i4/p608
|
Statistics & downloads: |
Abstract page: | 471 | Full-text PDF : | 229 | References: | 74 | First page: | 1 |
|