Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 78, Issue 4, Pages 579–594
DOI: https://doi.org/10.4213/mzm2615
(Mi mzm2615)
 

This article is cited in 14 scientific papers (total in 14 papers)

Derived Categories of Fano Threefolds $V_{12}$

A. G. Kuznetsov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: In the present paper, we give a description of the derived category of coherent sheaves on a Fano threefold of index 1 and degree 12 (the variety $V_{12}$). It can easily be shown that if $X$ is a $V_{12}$ variety, then its derived category contains an exceptional pair of vector bundles $(\mathscr U,\mathscr O_X)$, where $\mathscr O_X$ is the trivial bundle, and $\mathscr U$ is the Mukai bundle of rank 5 (which induces the embedding $X\to\operatorname{Gr}(5,10)$). The orthogonal subcategory $\mathscr A_X={}^\perp\left<\mathscr U,\mathscr O\right>\subset\mathscr D^b(X)$ can be treated as the nontrivial part of the derived category of $X$. The main result of the present paper is the construction of the category equivalence $\mathscr A_X\cong\mathscr D^b(C^\vee)$, where $C^\vee$ is the curve of genus 7 which can be canonically associated to $X$ according to the results due to Iliev and Markushevich. In the construction of the equivalence, we make use of the geometric results due to Iliev and Markushevich, as well as the Bondal and Orlov results about derived categories. As an application, we prove that the Fano surface of $X$ (which is the surface parametrizing conics on $X$) is isomorphicto $S^2C^\vee$, the symmetric square of the corresponding curve of genus 7.
Received: 22.11.2004
English version:
Mathematical Notes, 2005, Volume 78, Issue 4, Pages 537–550
DOI: https://doi.org/10.1007/s11006-005-0152-6
Bibliographic databases:
Document Type: Article
UDC: 514.762
Language: Russian
Citation: A. G. Kuznetsov, “Derived Categories of Fano Threefolds $V_{12}$”, Mat. Zametki, 78:4 (2005), 579–594; Math. Notes, 78:4 (2005), 537–550
Citation in format AMSBIB
\Bibitem{Kuz05}
\by A.~G.~Kuznetsov
\paper Derived Categories of Fano Threefolds $V_{12}$
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 4
\pages 579--594
\mathnet{http://mi.mathnet.ru/mzm2615}
\crossref{https://doi.org/10.4213/mzm2615}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2226730}
\zmath{https://zbmath.org/?q=an:1111.14038}
\elib{https://elibrary.ru/item.asp?id=9155894}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 4
\pages 537--550
\crossref{https://doi.org/10.1007/s11006-005-0152-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000233144200024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27144465201}
Linking options:
  • https://www.mathnet.ru/eng/mzm2615
  • https://doi.org/10.4213/mzm2615
  • https://www.mathnet.ru/eng/mzm/v78/i4/p579
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:612
    Full-text PDF :254
    References:56
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024