Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 78, Issue 4, Pages 579–594
DOI: https://doi.org/10.4213/mzm2615
(Mi mzm2615)
 

This article is cited in 14 scientific papers (total in 14 papers)

Derived Categories of Fano Threefolds V12V12

A. G. Kuznetsov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: In the present paper, we give a description of the derived category of coherent sheaves on a Fano threefold of index 1 and degree 12 (the variety V12V12). It can easily be shown that if XX is a V12V12 variety, then its derived category contains an exceptional pair of vector bundles (U,OX), where OX is the trivial bundle, and U is the Mukai bundle of rank 5 (which induces the embedding XGr(5,10)). The orthogonal subcategory AX=U,ODb(X) can be treated as the nontrivial part of the derived category of X. The main result of the present paper is the construction of the category equivalence AXDb(C), where C is the curve of genus 7 which can be canonically associated to X according to the results due to Iliev and Markushevich. In the construction of the equivalence, we make use of the geometric results due to Iliev and Markushevich, as well as the Bondal and Orlov results about derived categories. As an application, we prove that the Fano surface of X (which is the surface parametrizing conics on X) is isomorphicto S2C, the symmetric square of the corresponding curve of genus 7.
Received: 22.11.2004
English version:
Mathematical Notes, 2005, Volume 78, Issue 4, Pages 537–550
DOI: https://doi.org/10.1007/s11006-005-0152-6
Bibliographic databases:
Document Type: Article
UDC: 514.762
Language: Russian
Citation: A. G. Kuznetsov, “Derived Categories of Fano Threefolds V12”, Mat. Zametki, 78:4 (2005), 579–594; Math. Notes, 78:4 (2005), 537–550
Citation in format AMSBIB
\Bibitem{Kuz05}
\by A.~G.~Kuznetsov
\paper Derived Categories of Fano Threefolds $V_{12}$
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 4
\pages 579--594
\mathnet{http://mi.mathnet.ru/mzm2615}
\crossref{https://doi.org/10.4213/mzm2615}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2226730}
\zmath{https://zbmath.org/?q=an:1111.14038}
\elib{https://elibrary.ru/item.asp?id=9155894}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 4
\pages 537--550
\crossref{https://doi.org/10.1007/s11006-005-0152-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000233144200024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27144465201}
Linking options:
  • https://www.mathnet.ru/eng/mzm2615
  • https://doi.org/10.4213/mzm2615
  • https://www.mathnet.ru/eng/mzm/v78/i4/p579
  • This publication is cited in the following 14 articles:
    1. Hiromichi Takagi, “Duality related with key varieties of ℚ-Fano threefolds constructed from projective bundles”, Advances in Geometry, 24:1 (2024), 1  crossref
    2. Lehmann B., Tanimoto Sh., “Rational Curves on Prime Fano Threefolds of Index 1”, J. Algebr. Geom., 30:1 (2021), 151–188  crossref  mathscinet  isi  scopus
    3. Hosono Sh., Takagi H., “Derived Categories of Artin-Mumford Double Solids”, Kyoto J. Math., 60:1 (2020), 107–177  crossref  mathscinet  isi
    4. Laterveer R., “Zero-Cycles on Self-Products of Surfaces: Some New Examples Verifying Voisin'S Conjecture”, Rend. Circ. Mat. Palermo, 68:2 (2019), 419–431  crossref  mathscinet  isi
    5. Kuznetsov A.G., Prokhorov Yu.G., Shramov C.A., “Hilbert Schemes of Lines and Conics and Automorphism Groups of Fano Threefolds”, Jap. J. Math., 13:1 (2018), 109–185  crossref  mathscinet  zmath  isi  scopus  scopus
    6. A. G. Kuznetsov, “On linear sections of the spinor tenfold. I”, Izv. Math., 82:4 (2018), 694–751  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. Auel A. Bernardara M., “Cycles, Derived Categories, and Rationality”, Surveys on Recent Developments in Algebraic Geometry, Proceedings of Symposia in Pure Mathematics, 95, ed. Coskun I. DeFernex T. Gibney A., Amer Mathematical Soc, 2017, 199–266  crossref  mathscinet  zmath  isi  scopus
    8. Kuznetsov A., “Derived Categories View on Rationality Problems”, Rationality Problems in Algebraic Geometry, Lect. Notes Math., Lecture Notes in Mathematics, 2172, eds. Pardini R., Pirola G., Springer International Publishing Ag, 2016, 67–104  crossref  mathscinet  isi  scopus  scopus
    9. Auel A. Bernardara M. Bolognesi M., “Fibrations in Complete Intersections of Quadrics, Clifford Algebras, Derived Categories, and Rationality Problems”, J. Math. Pures Appl., 102:1 (2014), 249–291  crossref  mathscinet  zmath  isi  scopus  scopus
    10. Brambilla M.Ch., Faenzi D., “Vector Bundles on Fano Threefolds of Genus 7 and Brill-Noether Loci”, Int. J. Math., 25:3 (2014), 1450023  crossref  mathscinet  zmath  isi  scopus  scopus
    11. Bernardara M. Bolognesi M., “Categorical Representability and Intermediate Jacobians of Fano Threefolds”, Derived Categories in Algebraic Geometry - Tokyo 2011, EMS Ser. Congr. Rep., ed. Kawamata Y., Eur. Math. Soc., 2012, 1–25  mathscinet  zmath  isi
    12. Brambilla M.Ch., Faenzi D., “Moduli Spaces of Rank-2 ACM Bundles on Prime Fano Threefolds”, Michigan Math J, 60:1 (2011), 113–148  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    13. Kuznetsov, A, “Derived categories of quadric fibrations and intersections of quadrics”, Advances in Mathematics, 218:5 (2008), 1340  crossref  mathscinet  zmath  isi  scopus  scopus
    14. A. G. Kuznetsov, “Hyperplane sections and derived categories”, Izv. Math., 70:3 (2006), 447–547  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:665
    Full-text PDF :269
    References:67
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025