Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 78, Issue 4, Pages 537–541
DOI: https://doi.org/10.4213/mzm2612
(Mi mzm2612)
 

This article is cited in 36 scientific papers (total in 36 papers)

On Brennan's Conjecture for a Special Class of Functions

I. R. Kayumov

N. G. Chebotarev Research Institute of Mathematics and Mechanics, Kazan State University
References:
Abstract: In this paper, we prove Brennan's conjecture for conformal mappings $f$ of the disk $\{z:|z|<1\}$ assuming that the Taylor coefficients of the function $\log(zf'(z)/f(z))$ at zero are nonnegative. We also obtain inequalities for the integral means over the circle $|z|=r$ of the squared modulus of the function $zf'(z)/f(z)$.
Received: 17.12.2004
Revised: 11.04.2005
English version:
Mathematical Notes, 2005, Volume 78, Issue 4, Pages 498–502
DOI: https://doi.org/10.1007/s11006-005-0149-1
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: I. R. Kayumov, “On Brennan's Conjecture for a Special Class of Functions”, Mat. Zametki, 78:4 (2005), 537–541; Math. Notes, 78:4 (2005), 498–502
Citation in format AMSBIB
\Bibitem{Kay05}
\by I.~R.~Kayumov
\paper On Brennan's Conjecture for a Special Class of Functions
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 4
\pages 537--541
\mathnet{http://mi.mathnet.ru/mzm2612}
\crossref{https://doi.org/10.4213/mzm2612}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2226727}
\zmath{https://zbmath.org/?q=an:1105.30009}
\elib{https://elibrary.ru/item.asp?id=9155891}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 4
\pages 498--502
\crossref{https://doi.org/10.1007/s11006-005-0149-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000233144200021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27144501471}
Linking options:
  • https://www.mathnet.ru/eng/mzm2612
  • https://doi.org/10.4213/mzm2612
  • https://www.mathnet.ru/eng/mzm/v78/i4/p537
  • This publication is cited in the following 36 articles:
    1. Sercan Kaz{\i}moğlu, Erhan Deniz, H. M. Srivastava, “Sharp Coefficients Bounds for Starlike Functions Associated with Gregory Coefficients”, Complex Anal. Oper. Theory, 18:1 (2024)  crossref
    2. Vasudevarao Allu, Navneet Lal Sharma, “On logarithmic coefficients for classes of analytic functions associated with convex functions”, Bulletin des Sciences Mathématiques, 191 (2024), 103384  crossref
    3. Zhen Peng, Muhammad Arif, Muhammad Abbas, Nak Eun Cho, Reem K. Alhefthi, “Sharp coefficient problems of functions with bounded turning subordinated to the domain of cosine hyperbolic function”, MATH, 9:6 (2024), 15761  crossref
    4. Vijayalakshmi Sangarambadi Padmanabhan, Thirumalai Vinjimur Sudharsan, Teodor Bulboacă, “Symmetric Toeplitz Determinants for Classes Defined by Post Quantum Operators Subordinated to the Limaçon Function”, Stud. Univ. Babes-Bolyai Math., 69:2 (2024), 299  crossref
    5. Huo Tang, Zeeshan Mujahid, Nazar Khan, Fairouz Tchier, Muhammad Ghaffar Khan, “Generalized Bounded Turning Functions Connected with Gregory Coefficients”, Axioms, 13:6 (2024), 359  crossref
    6. Kholood M. Alsager, Sheza M. El-Deeb, Gangadharan Murugusundaramoorthy, Daniel Breaz, “Coefficient Functionals of Sakaguchi-Type Starlike Functions Involving Caputo-Type Fractional Derivatives Subordinated to the Three-Leaf Function”, Mathematics, 12:14 (2024), 2273  crossref
    7. Kapil Jaglan, Anbareeswaran Sairam Kaliraj, “On odd univalent harmonic mappings”, Anal.Math.Phys., 14:5 (2024)  crossref
    8. Hari. M. Srivastava, Nak Eun Cho, A. A. Alderremy, Alina Alb Lupas, Emad E. Mahmoud, Shahid Khan, “Sharp inequalities for a class of novel convex functions associated with Gregory polynomials”, J Inequal Appl, 2024:1 (2024)  crossref
    9. Navneet Lal Sharma, See Keong Lee, Rosihan M. Ali, “Estimates Logarithmic Coefficient Inequalities for Certain Families of Analytic Functions”, Comput. Methods Funct. Theory, 2024  crossref
    10. Khalil Ullah, Muhammad Arif, Ibtisam Mohammed Aldawish, Sheza M. El-Deeb, “Investigation of the Second-Order Hankel Determinant for Sakaguchi-Type Functions Involving the Symmetric Cardioid-Shaped Domain”, Fractal Fract, 7:5 (2023), 376  crossref
    11. Ebrahim Analouei Adegani, Teodor Bulboacă, Nafya Hameed Mohammed, Paweł Zaprawa, “Solution of logarithmic coefficients conjectures for some classes of convex functions”, Mathematica Slovaca, 73:1 (2023), 79  crossref
    12. Ebrahim Analouei Adegani, Ahmad Motamednezhad, Mostafa Jafari, Teodor Bulboacă, “Logarithmic Coefficients Inequality for the Family of Functions Convex in One Direction”, Mathematics, 11:9 (2023), 2140  crossref
    13. Muhammad Imran Faisal, Isra Al-Shbeil, Muhammad Abbas, Muhammad Arif, Reem K. Alhefthi, “Problems Concerning Coefficients of Symmetric Starlike Functions Connected with the Sigmoid Function”, Symmetry, 15:7 (2023), 1292  crossref
    14. Mohammed N.H., Adegani E.A., Bulboaca T., Cho N.E., “A Family of Holomorphic Functions Defined By Differential Inequality”, Math. Inequal. Appl., 25:1 (2022), 27–39  crossref  mathscinet  isi
    15. Pongsakorn Sunthrayuth, Naveed Iqbal, Muhammad Naeem, Yousef Jawarneh, Sallieu K. Samura, Mohsan Raza, “The Sharp Upper Bounds of the Hankel Determinant on Logarithmic Coefficients for Certain Analytic Functions Connected with Eight-Shaped Domains”, Journal of Function Spaces, 2022 (2022), 1  crossref
    16. Lei Shi, Muhammad Arif, Mohsan Raza, Muhammad Abbas, “Hankel Determinant Containing Logarithmic Coefficients for Bounded Turning Functions Connected to a Three-Leaf-Shaped Domain”, Mathematics, 10:16 (2022), 2924  crossref
    17. Azzh Saad Alshehry, Rasool Shah, Abdul Bariq, Sarfraz Nawaz Malik, “The Second Hankel Determinant of Logarithmic Coefficients for Starlike and Convex Functions Involving Four-Leaf-Shaped Domain”, Journal of Function Spaces, 2022 (2022), 1  crossref
    18. Lei Shi, Muhammad Arif, Ayesha Rafiq, Muhammad Abbas, Javed Iqbal, “Sharp Bounds of Hankel Determinant on Logarithmic Coefficients for Functions of Bounded Turning Associated with Petal-Shaped Domain”, Mathematics, 10:11 (2022), 1939  crossref
    19. Lei Shi, Muhammad Arif, Javed Iqbal, Khalil Ullah, Syed Muhammad Ghufran, “Sharp Bounds of Hankel Determinant on Logarithmic Coefficients for Functions Starlike with Exponential Function”, Fractal Fract, 6:11 (2022), 645  crossref
    20. Pongsakorn Sunthrayuth, Ibtisam Aldawish, Muhammad Arif, Muhammad Abbas, Sheza El-Deeb, “Estimation of the Second-Order Hankel Determinant of Logarithmic Coefficients for Two Subclasses of Starlike Functions”, Symmetry, 14:10 (2022), 2039  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:447
    Full-text PDF :243
    References:52
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025