Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 78, Issue 4, Pages 493–502
DOI: https://doi.org/10.4213/mzm2608
(Mi mzm2608)
 

This article is cited in 2 scientific papers (total in 2 papers)

Existence Criterion for Estimates of Derivatives of Rational Functions

V. I. Danchenko

Vladimir State University
Full-text PDF (229 kB) Citations (2)
References:
Abstract: Suppose that $K$ is a compact set in the open complex plane. In this paper, we prove an existence criterion for an estimate of Markov–Bernstein type for derivatives of a rational function $R(z)$ at any fixed point $z_0\in K$. We prove that, for a fixed integer $s$, the estimate of the form $|R^{(s)}(z_0)|\le C(K,z_0,s)n\|R\|_{C(K)}$, where $R$ is an arbitrary rational function of degree $n$ without poles on $K$ and $C$ is a bounded function depending on three arguments $K$, $z_0$, and $s$, holds if and only if the supremum $\omega(K,z_0,s)=\sup\{\operatorname{dist}(z,K)/|z-z_0|^{s+1}\}$ over $z$ in the complement of $K$ is finite. Under this assumption, $C$ is less than or equal to $\mathrm{const}\cdot s!\,\omega(K,z_0,s)$.
Received: 06.02.2004
Revised: 12.10.2004
English version:
Mathematical Notes, 2005, Volume 78, Issue 4, Pages 456–465
DOI: https://doi.org/10.1007/s11006-005-0146-4
Bibliographic databases:
UDC: 517.53
Language: Russian
Citation: V. I. Danchenko, “Existence Criterion for Estimates of Derivatives of Rational Functions”, Mat. Zametki, 78:4 (2005), 493–502; Math. Notes, 78:4 (2005), 456–465
Citation in format AMSBIB
\Bibitem{Dan05}
\by V.~I.~Danchenko
\paper Existence Criterion for Estimates of Derivatives of Rational Functions
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 4
\pages 493--502
\mathnet{http://mi.mathnet.ru/mzm2608}
\crossref{https://doi.org/10.4213/mzm2608}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2226724}
\zmath{https://zbmath.org/?q=an:1107.30007}
\elib{https://elibrary.ru/item.asp?id=9155888}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 4
\pages 456--465
\crossref{https://doi.org/10.1007/s11006-005-0146-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000233144200018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27144510938}
Linking options:
  • https://www.mathnet.ru/eng/mzm2608
  • https://doi.org/10.4213/mzm2608
  • https://www.mathnet.ru/eng/mzm/v78/i4/p493
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024