Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 78, Issue 3, Pages 323–330
DOI: https://doi.org/10.4213/mzm2601
(Mi mzm2601)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the Linearization of Hamiltonian Systems on Poisson Manifolds

Yu. M. Vorob'evab

a Moscow State Institute of Electronics and Mathematics
b University of Sonora
Full-text PDF (210 kB) Citations (1)
References:
Abstract: The linearization of a Hamiltonian system on a Poisson manifold at a given (singular) symplectic leaf gives a dynamical system on the normal bundle of the leaf, which is called the first variation system. We show that the first variation system admits a compatible Hamiltonian structure if there exists a transversal to the leaf which is invariant with respect to the flow of the original system. In the case where the transverse Lie algebra of the symplectic leaf is semisimple, this condition is also necessary.
Received: 28.09.2004
English version:
Mathematical Notes, 2005, Volume 78, Issue 3, Pages 297–303
DOI: https://doi.org/10.1007/s11006-005-0129-5
Bibliographic databases:
UDC: 517
Language: Russian
Citation: Yu. M. Vorob'ev, “On the Linearization of Hamiltonian Systems on Poisson Manifolds”, Mat. Zametki, 78:3 (2005), 323–330; Math. Notes, 78:3 (2005), 297–303
Citation in format AMSBIB
\Bibitem{Vor05}
\by Yu.~M.~Vorob'ev
\paper On the Linearization of Hamiltonian Systems on Poisson Manifolds
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 3
\pages 323--330
\mathnet{http://mi.mathnet.ru/mzm2601}
\crossref{https://doi.org/10.4213/mzm2601}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2227506}
\zmath{https://zbmath.org/?q=an:1115.53057}
\elib{https://elibrary.ru/item.asp?id=9173105}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 3
\pages 297--303
\crossref{https://doi.org/10.1007/s11006-005-0129-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000233144200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27144455712}
Linking options:
  • https://www.mathnet.ru/eng/mzm2601
  • https://doi.org/10.4213/mzm2601
  • https://www.mathnet.ru/eng/mzm/v78/i3/p323
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:302
    Full-text PDF :185
    References:43
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024