Citation:
J. Brüning, V. A. Geiler, K. V. Pankrashin, “Continuity and Asymptotic Behavior of Integral Kernels Related to Schrödinger Operators on Manifolds”, Mat. Zametki, 78:2 (2005), 314–316; Math. Notes, 78:2 (2005), 285–288
\Bibitem{BruGeiPan05}
\by J.~Br\"uning, V.~A.~Geiler, K.~V.~Pankrashin
\paper Continuity and Asymptotic Behavior of Integral Kernels Related to Schr\"odinger Operators on Manifolds
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 2
\pages 314--316
\mathnet{http://mi.mathnet.ru/mzm2589}
\crossref{https://doi.org/10.4213/mzm2589}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2245052}
\zmath{https://zbmath.org/?q=an:1085.58021}
\elib{https://elibrary.ru/item.asp?id=9155885}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 2
\pages 285--288
\crossref{https://doi.org/10.1007/s11006-005-0127-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231924500035}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23944433745}
Linking options:
https://www.mathnet.ru/eng/mzm2589
https://doi.org/10.4213/mzm2589
https://www.mathnet.ru/eng/mzm/v78/i2/p314
This publication is cited in the following 3 articles:
Eremin D.A., Ivanov D.A., Popov I.Yu., “Regular Potential Approximation for Delta-Perturbation Supported by Curve of the Laplace–Beltrami Operator on the Sphere”, Z. Anal. ihre. Anwend., 31:2 (2012), 125–137
Bozhok R. V., Koshmanenko V. D., “Parametrization of supersingular perturbations in the method of rigged Hilbert spaces”, Russ. J. Math. Phys., 14:4 (2007), 409–416
S. Albeverio, J. Brüning, S. Dobrokhotov, P. Exner, V. Koshmanenko, K. Pankrashkin, B. Pavlov, I. Popov, P. Šťovíček, “Vladimir A. Geyler”, Russ. J. Math. Phys., 14:4 (2007), 371