Abstract:
The Henstock integral in Rn and its relation to the n-dimensional improper Riemann integral are studied. A Hake-type theorem for the Henstock integral in Rn is proved.
Citation:
P. Muldowney, V. A. Skvortsov, “Improper Riemann Integral and Henstock Integral in Rn”, Mat. Zametki, 78:2 (2005), 251–258; Math. Notes, 78:2 (2005), 228–233
This publication is cited in the following 6 articles:
Francisco J. Mendoza, Juan H. Arredondo, Salvador Sánchez-Perales, Oswaldo Flores-Medina, Edgar Torres-Teutle, “The double Fourier transform of non-Lebesgue integrable functions of bounded Hardy–Krause variation”, Georgian Mathematical Journal, 30:3 (2023), 403
Skvortsov V., Tulone F., “A Version of Hake'S Theorem For Kurzweil-Henstock Integral in Terms of Variational Measure”, Georgian Math. J., 28:3 (2021), 471–476
Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics, 2021, 363
Flores-Medina O., Arredondo J.H., Escamilla-Reyna J.A., Mendoza-Torres F.J., “On the Factorization Theorem For the Tensor Product of Integrable Distributions”, Ann. Funct. Anal., 11:1 (2020), 118–136
Boccuto A., Skvortsov V.A., Tulone F., “A Hake-Type Theorem for Integrals with Respect to Abstract Derivation Bases in the Riesz Space Setting”, Math. Slovaca, 65:6 (2015), 1319–1336
V. A. Skvortsov, F. Tulone, “Generalized Hake property for integrals of Henstock type”, Moscow University Mathematics Bulletin, 68:6 (2013), 270–274