Abstract:
In this paper, we consider eigenvalue problems for the Laplace operator in three-dimensional domains with singularly perturbed boundary. Perturbations are generated by a complementary Dirichlet boundary condition on a small nonclosed surface inside the domain. The convergence and the asymptotic behavior of simple eigenvalues of the problem are considered.
Citation:
M. I. Cherdantsev, “Asymptotic Expansion of Eigenvalues of the Laplace Operator in Domains with Singularly Perturbed Boundary”, Mat. Zametki, 78:2 (2005), 299–307; Math. Notes, 78:2 (2005), 270–278
\Bibitem{Che05}
\by M.~I.~Cherdantsev
\paper Asymptotic Expansion of Eigenvalues of the Laplace Operator in Domains with Singularly Perturbed Boundary
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 2
\pages 299--307
\mathnet{http://mi.mathnet.ru/mzm2575}
\crossref{https://doi.org/10.4213/mzm2575}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2245050}
\zmath{https://zbmath.org/?q=an:1106.35041}
\elib{https://elibrary.ru/item.asp?id=9155883}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 2
\pages 270--278
\crossref{https://doi.org/10.1007/s11006-005-0125-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231924500033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23944511986}
Linking options:
https://www.mathnet.ru/eng/mzm2575
https://doi.org/10.4213/mzm2575
https://www.mathnet.ru/eng/mzm/v78/i2/p299
This publication is cited in the following 4 articles:
Medet Nursultanov, William Trad, Justin Tzou, Leo Tzou, “Eigenvalue variations of the Neumann Laplace operator due to perturbed boundary conditions”, Res Math Sci, 12:1 (2025)
N. N. Abdullazade, G. A. Chechkin, “Perturbation of the Steklov Problem on a Small Part of the Boundary”, J Math Sci, 196:4 (2014), 441
Chechkin G.A., Koroleva Yu.O., Meidell A., Persson L.-E., “On the Friedrichs inequality in a domain perforated aperiodically along the boundary. Homogenization procedure. Asymptotics for parabolic problems”, Russ. J. Math. Phys., 16:1 (2009), 1–16
A. G. Chechkina, “Convergence of solutions and eigenelements of Steklov type boundary value problems with boundary conditions of rapidly varying type”, J Math Sci, 162:3 (2009), 443