Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 78, Issue 2, Pages 299–307
DOI: https://doi.org/10.4213/mzm2575
(Mi mzm2575)
 

This article is cited in 4 scientific papers (total in 4 papers)

Asymptotic Expansion of Eigenvalues of the Laplace Operator in Domains with Singularly Perturbed Boundary

M. I. Cherdantsev

Ufa State Aviation Technical University
Full-text PDF (192 kB) Citations (4)
References:
Abstract: In this paper, we consider eigenvalue problems for the Laplace operator in three-dimensional domains with singularly perturbed boundary. Perturbations are generated by a complementary Dirichlet boundary condition on a small nonclosed surface inside the domain. The convergence and the asymptotic behavior of simple eigenvalues of the problem are considered.
Received: 24.08.2004
Revised: 27.12.2004
English version:
Mathematical Notes, 2005, Volume 78, Issue 2, Pages 270–278
DOI: https://doi.org/10.1007/s11006-005-0125-9
Bibliographic databases:
UDC: 571.958
Language: Russian
Citation: M. I. Cherdantsev, “Asymptotic Expansion of Eigenvalues of the Laplace Operator in Domains with Singularly Perturbed Boundary”, Mat. Zametki, 78:2 (2005), 299–307; Math. Notes, 78:2 (2005), 270–278
Citation in format AMSBIB
\Bibitem{Che05}
\by M.~I.~Cherdantsev
\paper Asymptotic Expansion of Eigenvalues of the Laplace Operator in Domains with Singularly Perturbed Boundary
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 2
\pages 299--307
\mathnet{http://mi.mathnet.ru/mzm2575}
\crossref{https://doi.org/10.4213/mzm2575}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2245050}
\zmath{https://zbmath.org/?q=an:1106.35041}
\elib{https://elibrary.ru/item.asp?id=9155883}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 2
\pages 270--278
\crossref{https://doi.org/10.1007/s11006-005-0125-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231924500033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23944511986}
Linking options:
  • https://www.mathnet.ru/eng/mzm2575
  • https://doi.org/10.4213/mzm2575
  • https://www.mathnet.ru/eng/mzm/v78/i2/p299
  • This publication is cited in the following 4 articles:
    1. Medet Nursultanov, William Trad, Justin Tzou, Leo Tzou, “Eigenvalue variations of the Neumann Laplace operator due to perturbed boundary conditions”, Res Math Sci, 12:1 (2025)  crossref
    2. N. N. Abdullazade, G. A. Chechkin, “Perturbation of the Steklov Problem on a Small Part of the Boundary”, J Math Sci, 196:4 (2014), 441  crossref
    3. Chechkin G.A., Koroleva Yu.O., Meidell A., Persson L.-E., “On the Friedrichs inequality in a domain perforated aperiodically along the boundary. Homogenization procedure. Asymptotics for parabolic problems”, Russ. J. Math. Phys., 16:1 (2009), 1–16  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    4. A. G. Chechkina, “Convergence of solutions and eigenelements of Steklov type boundary value problems with boundary conditions of rapidly varying type”, J Math Sci, 162:3 (2009), 443  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:571
    Full-text PDF :244
    References:86
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025