Abstract:
We consider the set of arithmetic means for some classes of stationary and quasistationary sequences. Order-sharp estimates of the entropy of this set for the classes under consideration are given.
Citation:
V. F. Gaposhkin, “Estimates of the Entropy of the Set of Means for Some Classes of Stationary and Quasistationary Sequences”, Mat. Zametki, 78:1 (2005), 52–58; Math. Notes, 78:1 (2005), 47–52
\Bibitem{Gap05}
\by V.~F.~Gaposhkin
\paper Estimates of the Entropy of the Set of Means for Some Classes of Stationary and Quasistationary Sequences
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 1
\pages 52--58
\mathnet{http://mi.mathnet.ru/mzm2561}
\crossref{https://doi.org/10.4213/mzm2561}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2244868}
\zmath{https://zbmath.org/?q=an:1086.62002}
\elib{https://elibrary.ru/item.asp?id=9155854}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 1
\pages 47--52
\crossref{https://doi.org/10.1007/s11006-005-0097-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231924500005}
\elib{https://elibrary.ru/item.asp?id=13915411}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23944522637}
Linking options:
https://www.mathnet.ru/eng/mzm2561
https://doi.org/10.4213/mzm2561
https://www.mathnet.ru/eng/mzm/v78/i1/p52
This publication is cited in the following 2 articles:
V. F. Gaposhkin, “Exact Estimates of the Metric Entropy of the Averages for Some Classes of Stationary Sequences”, Theory Probab. Appl., 53:1 (2009), 37–58
V. F. Gaposhkin, “Precise estimates of the metric entropy for the set of arithmetic averages of quasi-stationary processes”, Theory Probab. Appl., 51:4 (2007), 695–704