Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 77, Issue 6, Pages 861–876
DOI: https://doi.org/10.4213/mzm2543
(Mi mzm2543)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the Rate of Approximation of Closed Jordan Curves by Lemniscates

O. N. Kosukhin

M. V. Lomonosov Moscow State University
Full-text PDF (240 kB) Citations (4)
References:
Abstract: As proved by Hilbert, it is, in principle, possible to construct an arbitrarily close approximation in the Hausdorff metric to an arbitrary closed Jordan curve $\Gamma$ in the complex plane $\{z\}$ by lemniscates generated by polynomials $P(z)$. In the present paper, we obtain quantitative upper bounds for the least deviations $H_n(\Gamma)$ (in this metric) from the curve $\Gamma$ of the lemniscates generated by polynomials of a given degree $n$ in terms of the moduli of continuity of the conformal mapping of the exterior of $\Gamma$ onto the exterior of the unit circle, of the mapping inverse to it, and of the Green function with a pole at infinity for the exterior of $\Gamma$. For the case in which the curve $\Gamma$ is analytic, we prove that $H_n(\Gamma)=O(q^n)$, $0\le q=q(\Gamma)<1$, $n\to\infty$.
Received: 06.11.2003
English version:
Mathematical Notes, 2005, Volume 77, Issue 6, Pages 794–808
DOI: https://doi.org/10.1007/s11006-005-0080-5
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: O. N. Kosukhin, “On the Rate of Approximation of Closed Jordan Curves by Lemniscates”, Mat. Zametki, 77:6 (2005), 861–876; Math. Notes, 77:6 (2005), 794–808
Citation in format AMSBIB
\Bibitem{Kos05}
\by O.~N.~Kosukhin
\paper On the Rate of Approximation of Closed Jordan Curves by Lemniscates
\jour Mat. Zametki
\yr 2005
\vol 77
\issue 6
\pages 861--876
\mathnet{http://mi.mathnet.ru/mzm2543}
\crossref{https://doi.org/10.4213/mzm2543}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2246962}
\zmath{https://zbmath.org/?q=an:1084.30042}
\elib{https://elibrary.ru/item.asp?id=9155835}
\transl
\jour Math. Notes
\yr 2005
\vol 77
\issue 6
\pages 794--808
\crossref{https://doi.org/10.1007/s11006-005-0080-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000230336000020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-21644479139}
Linking options:
  • https://www.mathnet.ru/eng/mzm2543
  • https://doi.org/10.4213/mzm2543
  • https://www.mathnet.ru/eng/mzm/v77/i6/p861
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:527
    Full-text PDF :254
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024