Abstract:
The tau function for the Schlesinger equation of isomonodromic deformations is represented as the result of successively applied elementary gauge transformations; this, in particular, suggests a simple proof for the Miwa theorem about the tau function.
Citation:
A. A. Bolibrukh, “On the Tau Function for the Schlesinger Equation of Isomonodromic Deformations”, Mat. Zametki, 74:2 (2003), 184–191; Math. Notes, 74:2 (2003), 177–184
\Bibitem{Bol03}
\by A.~A.~Bolibrukh
\paper On the Tau Function for the Schlesinger Equation of Isomonodromic Deformations
\jour Mat. Zametki
\yr 2003
\vol 74
\issue 2
\pages 184--191
\mathnet{http://mi.mathnet.ru/mzm254}
\crossref{https://doi.org/10.4213/mzm254}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2023762}
\zmath{https://zbmath.org/?q=an:1068.34082}
\transl
\jour Math. Notes
\yr 2003
\vol 74
\issue 2
\pages 177--184
\crossref{https://doi.org/10.1023/A:1025048023068}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185172900023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0347755247}
Linking options:
https://www.mathnet.ru/eng/mzm254
https://doi.org/10.4213/mzm254
https://www.mathnet.ru/eng/mzm/v74/i2/p184
This publication is cited in the following 17 articles:
M. Bertola, D. Korotkin, “On the tau function of the hypergeometric equation”, Physica D: Nonlinear Phenomena, 439 (2022), 133381
Dragovic V., Shramchenko V., “Algebro-Geometric Approach to An Okamoto Transformation, the Painleve Vi and Schlesinger Equations”, Ann. Henri Poincare, 20:4 (2019), 1121–1148
Yu. P. Bibilo, R. R. Gontsov, “Some properties of Malgrange isomonodromic deformations of linear 2×2 systems”, Proc. Steklov Inst. Math., 277 (2012), 16–26
Bibilo Yu.P., Gontsov R.R., “On the Malgrange Isomonodromic Deformations of Nonresonant Irregular Systems”, Painleve Equations and Related Topics (2012), Degruyter Proceedings in Mathematics, eds. Bruno A., Batkhin A., Walter de Gruyter & Co, 2012, 95–99
D. V. Anosov, V. P. Leksin, “Andrei Andreevich Bolibrukh's works on the analytic theory of differential equations”, Russian Math. Surveys, 66:1 (2011), 1–33
R. R. Gontsov, V. A. Poberezhnyi, G. F. Helminck, “On deformations of linear differential systems”, Russian Math. Surveys, 66:1 (2011), 63–105
I. V. Vyugin, “Riemann–Hilbert problem for scalar Fuchsian equations and related problems”, Russian Math. Surveys, 66:1 (2011), 35–62
Korotkin D., Shramchenko V., “Riemann–Hilbert Problems for Hurwitz Frobenius Manifolds”, Lett Math Phys, 96:1–3 (2011), 109–121
Korotkin D., Shramchenko V., “Riemann–Hilbert Problem for Hurwitz Frobenius Manifolds: Regular Singularities”, J. Reine Angew. Math., 661 (2011), 125–187
Gontsov R.R., Vyugin I.V., “Apparent Singularities of Fuchsian Equations and the Painlevé Property for Gamier Systems”, J. Geom. Phys., 61:12 (2011), 2419–2435
Gontsov, RR, “Apparent singularities of Fuchsian equations, the Painlevé VI equation, and Garnier systems”, Doklady Mathematics, 79:2 (2009), 176
R. R. Gontsov, “On Solutions of the Schlesinger Equation in the Neigborhood of the Malgrange Θ-Divisor”, Math. Notes, 83:5 (2008), 707–711
Shramchenko, V, “Riemann–Hilbert problem associated to Frobenius manifold structures on Hurwitz spaces: Irregular singularity”, Duke Mathematical Journal, 144:1 (2008), 1
V. A. Poberezhnyi, “General Linear Problem of the Isomonodromic Deformation of Fuchsian Systems”, Math. Notes, 81:4 (2007), 529–542
Sabbah C., “The Work of Andrey Bolibrukh on Isomonodromic Deformations”, Differential Equations and Quantum Groups: Andrey a. Bolibrukh Memorial Volume, Irma Lectures in Mathematics and Theoretical Physics, 9, eds. Bertrand D., Enriquez B., Mitschi C., Sabbah C., Schafke R., Eur. Math. Soc., 2007, 9–25
D. V. Anosov, V. P. Leksin, “Andrei Andreevich Bolibrukh in life and science (30 January 1950 – 11 November 2003)”, Russian Math. Surveys, 59:6 (2004), 1009–1028
D. V. Anosov, V. I. Arnol'd, V. M. Buchstaber, V. A. Golubeva, A. A. Gonchar, A. B. Zhizhchenko, Yu. S. Ilyashenko, V. V. Kozlov, S. P. Konovalov, L. D. Kudryavtsev, V. P. Leksin, O. B. Lupanov, A. A. Mal'tsev, E. F. Mishchenko, S. P. Novikov, Yu. S. Osipov, M. M. Postnikov, V. A. Sadovnichii, A. G. Sergeev, L. D. Faddeev, A. V. Chernavskii, “Andrei Andreevich Bolibrukh (obituary)”, Russian Math. Surveys, 58:6 (2003), 1185–1189