Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 77, Issue 6, Pages 803–813
DOI: https://doi.org/10.4213/mzm2537
(Mi mzm2537)
 

This article is cited in 6 scientific papers (total in 6 papers)

Density Modulo 1 of Sublacunary Sequences

R. K. Akhunzhanova, N. G. Moshchevitinb

a M. V. Lomonosov Moscow State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (235 kB) Citations (6)
References:
Abstract: We prove the existence of real numbers badly approximated by rational fractions whose denominators form a sublacunar sequence. For example, for the ascending sequence $s_n$, $n=1,2,3,\dots$, generated by the ordered numbers of the form $2^i3^j$, $i,j=1,2,3,\dots$, we prove that the set of real numbers $\alpha$, such that $\inf_{n\in\mathbb N}n\|s_n\alpha\|>0$, is a set of Hausdorff dimension 1. The divergence of the series $\sum_{n=1}^\infty\frac1n$ implies that the Lebesgue measure of those numbers is zero.
Received: 17.02.2004
English version:
Mathematical Notes, 2005, Volume 77, Issue 6, Pages 741–750
DOI: https://doi.org/10.1007/s11006-005-0075-2
Bibliographic databases:
UDC: 511
Language: Russian
Citation: R. K. Akhunzhanov, N. G. Moshchevitin, “Density Modulo 1 of Sublacunary Sequences”, Mat. Zametki, 77:6 (2005), 803–813; Math. Notes, 77:6 (2005), 741–750
Citation in format AMSBIB
\Bibitem{AkhMos05}
\by R.~K.~Akhunzhanov, N.~G.~Moshchevitin
\paper Density Modulo 1 of Sublacunary Sequences
\jour Mat. Zametki
\yr 2005
\vol 77
\issue 6
\pages 803--813
\mathnet{http://mi.mathnet.ru/mzm2537}
\crossref{https://doi.org/10.4213/mzm2537}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2246957}
\zmath{https://zbmath.org/?q=an:1078.11048}
\elib{https://elibrary.ru/item.asp?id=9155830}
\transl
\jour Math. Notes
\yr 2005
\vol 77
\issue 6
\pages 741--750
\crossref{https://doi.org/10.1007/s11006-005-0075-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000230336000015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-21644454850}
Linking options:
  • https://www.mathnet.ru/eng/mzm2537
  • https://doi.org/10.4213/mzm2537
  • https://www.mathnet.ru/eng/mzm/v77/i6/p803
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:393
    Full-text PDF :245
    References:50
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024