Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 77, Issue 5, Pages 753–767
DOI: https://doi.org/10.4213/mzm2532
(Mi mzm2532)
 

This article is cited in 3 scientific papers (total in 3 papers)

Special Monodromy Groups and the Riemann–Hilbert Problem for the Riemann Equation

V. A. Poberezhnyi

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (250 kB) Citations (3)
References:
Abstract: In this paper, we solve the Riemann–Hilbert problem for the Riemann equation and for the hypergeometric equation. We describe all possible representations of the monodromy of the Riemann equation. We show that if the monodromy of the Riemann equation belongs to $SL(2,\mathbb C)$, then it can be realized not only by the Riemann equation, but also by the more special Riemann–Sturm–Liouville equation. For the hypergeometric equation, we construct a criterion for its monodromy group to belong to $SL(2,\mathbb Z)$.
Received: 27.02.2004
English version:
Mathematical Notes, 2005, Volume 77, Issue 5, Pages 695–707
DOI: https://doi.org/10.1007/s11006-005-0070-7
Bibliographic databases:
UDC: 517.9+524.745.87
Language: Russian
Citation: V. A. Poberezhnyi, “Special Monodromy Groups and the Riemann–Hilbert Problem for the Riemann Equation”, Mat. Zametki, 77:5 (2005), 753–767; Math. Notes, 77:5 (2005), 695–707
Citation in format AMSBIB
\Bibitem{Pob05}
\by V.~A.~Poberezhnyi
\paper Special Monodromy Groups and the Riemann--Hilbert Problem for the Riemann Equation
\jour Mat. Zametki
\yr 2005
\vol 77
\issue 5
\pages 753--767
\mathnet{http://mi.mathnet.ru/mzm2532}
\crossref{https://doi.org/10.4213/mzm2532}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2178845}
\zmath{https://zbmath.org/?q=an:1107.14009}
\elib{https://elibrary.ru/item.asp?id=9155825}
\transl
\jour Math. Notes
\yr 2005
\vol 77
\issue 5
\pages 695--707
\crossref{https://doi.org/10.1007/s11006-005-0070-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000230336000010}
\elib{https://elibrary.ru/item.asp?id=13473873}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-21744437272}
Linking options:
  • https://www.mathnet.ru/eng/mzm2532
  • https://doi.org/10.4213/mzm2532
  • https://www.mathnet.ru/eng/mzm/v77/i5/p753
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:536
    Full-text PDF :270
    References:44
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024