Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 77, Issue 5, Pages 656–664
DOI: https://doi.org/10.4213/mzm2524
(Mi mzm2524)
 

This article is cited in 13 scientific papers (total in 13 papers)

Asymptotic Behavior of the Eigenvalues of the Schrödinger Operator with Transversal Potential in a Weakly Curved Infinite Cylinder

V. V. Grushin

Moscow State Institute of Electronics and Mathematics
References:
Abstract: In this paper, we derive sufficient conditions for the existence of an eigenvalue for the Laplace and the Schrödinger operators with transversal potential for homogeneous Dirichlet boundary conditions in a tube, i.e., in a curved and twisted infinite cylinder. For tubes with small curvature and small internal torsion, we derive an asymptotic formula for the eigenvalue of the problem. We show that, under certain relations between the curvature and the internal torsion of the tube, the above operators possess no discrete spectrum.
Received: 28.04.2004
Revised: 23.09.2004
English version:
Mathematical Notes, 2005, Volume 77, Issue 5, Pages 606–613
DOI: https://doi.org/10.1007/s11006-005-0062-7
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: V. V. Grushin, “Asymptotic Behavior of the Eigenvalues of the Schrödinger Operator with Transversal Potential in a Weakly Curved Infinite Cylinder”, Mat. Zametki, 77:5 (2005), 656–664; Math. Notes, 77:5 (2005), 606–613
Citation in format AMSBIB
\Bibitem{Gru05}
\by V.~V.~Grushin
\paper Asymptotic Behavior of the Eigenvalues of the Schr\"odinger Operator with Transversal Potential in a Weakly Curved Infinite Cylinder
\jour Mat. Zametki
\yr 2005
\vol 77
\issue 5
\pages 656--664
\mathnet{http://mi.mathnet.ru/mzm2524}
\crossref{https://doi.org/10.4213/mzm2524}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2178837}
\zmath{https://zbmath.org/?q=an:1082.35113}
\elib{https://elibrary.ru/item.asp?id=9155817}
\transl
\jour Math. Notes
\yr 2005
\vol 77
\issue 5
\pages 606--613
\crossref{https://doi.org/10.1007/s11006-005-0062-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000230336000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-21644478248}
Linking options:
  • https://www.mathnet.ru/eng/mzm2524
  • https://doi.org/10.4213/mzm2524
  • https://www.mathnet.ru/eng/mzm/v77/i5/p656
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024