Abstract:
In this paper, we obtain a necessary and sufficient condition for the nontrivial solvability of homogeneous Dirichlet problems in the disk for linear equations of arbitrary even order $2m$ with constant complex coefficients and homogeneous nondegenerate symbol in general position. The cases $m=1,2,3$ are studied separately. For the case $m=2$, we consider examples of real elliptic systems reducible to single equations with constant complex coefficients for which the homogeneous Dirichlet problem in the disk has a countable set of linearly independent polynomial solutions.
Citation:
V. P. Burskii, E. A. Buryachenko, “Some aspects of the nontrivial solvability of homogeneous Dirichlet problems for linear equations of arbitrary even order in the disk”, Mat. Zametki, 77:4 (2005), 498–508; Math. Notes, 77:4 (2005), 461–470
\Bibitem{BurBur05}
\by V.~P.~Burskii, E.~A.~Buryachenko
\paper Some aspects of the nontrivial solvability of homogeneous Dirichlet problems for linear equations of arbitrary even order in the disk
\jour Mat. Zametki
\yr 2005
\vol 77
\issue 4
\pages 498--508
\mathnet{http://mi.mathnet.ru/mzm2508}
\crossref{https://doi.org/10.4213/mzm2508}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2178013}
\zmath{https://zbmath.org/?q=an:1112.35043}
\elib{https://elibrary.ru/item.asp?id=9155800}
\transl
\jour Math. Notes
\yr 2005
\vol 77
\issue 4
\pages 461--470
\crossref{https://doi.org/10.1007/s11006-005-0044-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000228965300015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-20244373176}
Linking options:
https://www.mathnet.ru/eng/mzm2508
https://doi.org/10.4213/mzm2508
https://www.mathnet.ru/eng/mzm/v77/i4/p498
This publication is cited in the following 14 articles:
A. H. Babayan, “On a Dirichlet Problem for Properly Elliptic Equation in the Space of Continuous Functions”, Lobachevskii J Math, 45:12 (2024), 6011
Kateryna Buryachenko, “Maximum principle for the weak solutions of the Cauchy problem for the fourth‐order hyperbolic equations”, Proc Appl Math and Mech, 2023
Ya. O. Baranetskij, P. I. Kalenyuk, “Nonlocal Problem with Multipoint Perturbations of Dirichlet Conditions for Even-Order Partial Differential Equations with Constant Coefficients”, J Math Sci, 256:4 (2021), 375
V. P. Burskii, E. V. Lesina, “On boundary value problems for an improperly elliptic equation in a circle”, Comput. Math. Math. Phys., 60:8 (2020), 1306–1321
Ya. O. Baranetskij, P. І. Kalenyuk, M. І. Kopach, “Nonlocal Multipoint Problem for Partial Differential Equations of Even Order with Constant Coefficients”, J Math Sci, 249:3 (2020), 307
Babayan A.H., “On a Dirichlet Problem For One Improperly Elliptic Equation”, Complex Var. Elliptic Equ., 64:5 (2019), 825–837
V. P. Burskii, “Equation–Domain Duality in the Dirichlet Problem for General Differential Equations in the Space $L_2$”, Proc. Steklov Inst. Math., 306 (2019), 33–42
Armenak H. Babayan, Seyran H. Abelyan, Springer Proceedings in Mathematics & Statistics, 291, Modern Methods in Operator Theory and Harmonic Analysis, 2019, 317
A. O. Babayan, S. O. Abelyan, “Defect Numbers of the Dirichlet Problem for a Properly Elliptic Sixth-Order Equation”, Math. Notes, 104:3 (2018), 339–347
Baranetskij Ya.O. Ivasiuk I.Ya. Kalenyuk I P. Solomko V A., “The Nonlocal Boundary Problem With Perturbations of Antiperiodicity Conditions For the Eliptic Equation With Constant Coefficients”, Carpathian Math. Publ., 10:2 (2018), 215–234
V. S. Il'kiv, “Nonuniqueness conditions for the solutions of the Dirichlet problem in a unit disk in terms of the coefficients of differential equation”, J Math Sci, 194:2 (2013), 182
Buryachenko E.A., “Conditions of nontrivial solvability of the homogeneous Dirichlet problem for equations of any even order in the case of multiple characteristics without slope angles”, Ukrainian Math. J., 62:5 (2010), 676–690
Render H., “Cauchy, Goursat and Dirichlet Problems for Holomorphic Partial Differential Equations”, Comput. Methods Funct. Theory, 10:2 (2010), 519–554