Abstract:
We solve the Laplace equation in an exterior infinite spherical domain with nonlinear (quadratic) boundary conditions on the spherical boundary. We linearize the problem and, under the additional assumption that the distinguishing function is spherically symmetric, write the solution by using the formal power series method with recursion of the series coefficients. Applying the Poincarè–Perron theorem, we describe the space of convergent formal power series and calculate its dimension. Estimating the roots of the fourth-degree characteristic polynomial corresponding to the given problem, we also calculate the dimension of the space of functions whose gradient at each point of the sphere is orthogonal to the linear combination of an axially symmetric dipole and a quadrupole. In conclusion, we state several unsolved problems arising in geophysical applications.
Citation:
P. M. Akhmet'ev, A. V. Khokhlov, “Classification of Harmonic Functions in the Exterior of the Unit Ball”, Mat. Zametki, 75:2 (2004), 182–191; Math. Notes, 75:2 (2004), 166–174
\Bibitem{AkhKho04}
\by P.~M.~Akhmet'ev, A.~V.~Khokhlov
\paper Classification of Harmonic Functions in the Exterior of the Unit Ball
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 2
\pages 182--191
\mathnet{http://mi.mathnet.ru/mzm25}
\crossref{https://doi.org/10.4213/mzm25}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2054551}
\zmath{https://zbmath.org/?q=an:1113.31002}
\elib{https://elibrary.ru/item.asp?id=13446791}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 2
\pages 166--174
\crossref{https://doi.org/10.1023/B:MATN.0000015033.66562.08}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220006100018}
Linking options:
https://www.mathnet.ru/eng/mzm25
https://doi.org/10.4213/mzm25
https://www.mathnet.ru/eng/mzm/v75/i2/p182
This publication is cited in the following 3 articles:
Kan T., Magnanini R., Onodera M., “Backus Problem in Geophysics: a Resolution Near the Dipole in Fractional Sobolev Spaces”, NoDea-Nonlinear Differ. Equ. Appl., 29:3 (2022), 21
Akhmet'ev P.M., Petrov A.V., “Classification of Harmonic Functions in the Exterior of a Unit Sphere and Its Application to the Description of the External Magnetic Field of the Earth”, Geomagn. Aeron., 59:6 (2019), 752–760
Díaz G., Diaz J. I., Otero J., “On an oblique boundary value problem related to the Backus problem in Geodesy”, Nonlinear Anal. Real World Appl., 7:2 (2006), 147–166