Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2003, Volume 74, Issue 1, Pages 108–117
DOI: https://doi.org/10.4213/mzm249
(Mi mzm249)
 

This article is cited in 4 scientific papers (total in 4 papers)

Norms on $L$ of Periodic Interpolation Splines with Equidistant Nodes

Yu. N. Subbotina, S. A. Telyakovskiib

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (203 kB) Citations (4)
References:
Abstract: We consider the set $S_{r,n}$ of periodic (with period 1) splines of degree $r$ with deficiency 1 whose nodes are at $n$ equidistant points $x_i=i / n$. For $n$-tuples $\mathbf y=(y_0, y_1, \dots,y_{n-1})$, we take splines $s_{r,n}(\mathbf y, x)$ from $S_{r,n}$ solving the interpolation problem
$$ s_{r, n} (\mathbf y, t_i)=y_i, $$
where $t_i = x_i$ if $r$ is odd and $t_i$ is the middle of the closed interval $[x_i , x_{i+1}]$ if $r$ is even. For the norms $L_{r,n}^*$ of the operator $\mathbf y\to s_{r,n} (\mathbf y, x)$ treated as an operator from $l^1$ to $L^1 [0,1]$ we establish the estimate
$$ L_{r, n}^*=\frac{4}{\pi^2 n} \log \min (r, n)+O\biggl(\frac{1}{n} \biggr) $$
with an absolute constant in the remainder. We study the relationship between the norms $L_{r,n}^*$ and the norms of similar operators for nonperiodic splines.
Received: 26.02.2002
English version:
Mathematical Notes, 2003, Volume 74, Issue 1, Pages 100–109
DOI: https://doi.org/10.1023/A:1025075301686
Bibliographic databases:
Document Type: Article
UDC: 517.67
Language: Russian
Citation: Yu. N. Subbotin, S. A. Telyakovskii, “Norms on $L$ of Periodic Interpolation Splines with Equidistant Nodes”, Mat. Zametki, 74:1 (2003), 108–117; Math. Notes, 74:1 (2003), 100–109
Citation in format AMSBIB
\Bibitem{SubTel03}
\by Yu.~N.~Subbotin, S.~A.~Telyakovskii
\paper Norms on $L$ of Periodic Interpolation Splines with Equidistant Nodes
\jour Mat. Zametki
\yr 2003
\vol 74
\issue 1
\pages 108--117
\mathnet{http://mi.mathnet.ru/mzm249}
\crossref{https://doi.org/10.4213/mzm249}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2010682}
\zmath{https://zbmath.org/?q=an:1146.41300}
\elib{https://elibrary.ru/item.asp?id=13416966}
\transl
\jour Math. Notes
\yr 2003
\vol 74
\issue 1
\pages 100--109
\crossref{https://doi.org/10.1023/A:1025075301686}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185172900012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0346494552}
Linking options:
  • https://www.mathnet.ru/eng/mzm249
  • https://doi.org/10.4213/mzm249
  • https://www.mathnet.ru/eng/mzm/v74/i1/p108
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:550
    Full-text PDF :232
    References:87
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024