Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2003, Volume 74, Issue 1, Pages 108–117
DOI: https://doi.org/10.4213/mzm249
(Mi mzm249)
 

This article is cited in 4 scientific papers (total in 4 papers)

Norms on L of Periodic Interpolation Splines with Equidistant Nodes

Yu. N. Subbotina, S. A. Telyakovskiib

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (203 kB) Citations (4)
References:
Abstract: We consider the set Sr,n of periodic (with period 1) splines of degree r with deficiency 1 whose nodes are at n equidistant points xi=i/n. For n-tuples y=(y0,y1,,yn1), we take splines sr,n(y,x) from Sr,n solving the interpolation problem
sr,n(y,ti)=yi,
where ti=xi if r is odd and ti is the middle of the closed interval [xi,xi+1] if r is even. For the norms Lr,n of the operator ysr,n(y,x) treated as an operator from l1 to L1[0,1] we establish the estimate
Lr,n=4π2nlogmin(r,n)+O(1n)
with an absolute constant in the remainder. We study the relationship between the norms Lr,n and the norms of similar operators for nonperiodic splines.
Received: 26.02.2002
English version:
Mathematical Notes, 2003, Volume 74, Issue 1, Pages 100–109
DOI: https://doi.org/10.1023/A:1025075301686
Bibliographic databases:
Document Type: Article
UDC: 517.67
Language: Russian
Citation: Yu. N. Subbotin, S. A. Telyakovskii, “Norms on L of Periodic Interpolation Splines with Equidistant Nodes”, Mat. Zametki, 74:1 (2003), 108–117; Math. Notes, 74:1 (2003), 100–109
Citation in format AMSBIB
\Bibitem{SubTel03}
\by Yu.~N.~Subbotin, S.~A.~Telyakovskii
\paper Norms on $L$ of Periodic Interpolation Splines with Equidistant Nodes
\jour Mat. Zametki
\yr 2003
\vol 74
\issue 1
\pages 108--117
\mathnet{http://mi.mathnet.ru/mzm249}
\crossref{https://doi.org/10.4213/mzm249}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2010682}
\zmath{https://zbmath.org/?q=an:1146.41300}
\elib{https://elibrary.ru/item.asp?id=13416966}
\transl
\jour Math. Notes
\yr 2003
\vol 74
\issue 1
\pages 100--109
\crossref{https://doi.org/10.1023/A:1025075301686}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185172900012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0346494552}
Linking options:
  • https://www.mathnet.ru/eng/mzm249
  • https://doi.org/10.4213/mzm249
  • https://www.mathnet.ru/eng/mzm/v74/i1/p108
  • This publication is cited in the following 4 articles:
    1. V. T. Shevaldin, “On integral Lebesgue constants of local splines with uniform knots”, Proc. Steklov Inst. Math. (Suppl.), 305, suppl. 1 (2019), S158–S165  mathnet  crossref  crossref  isi  elib
    2. E. V. Strelkova, V. T. Shevaldin, “On Lebesgue constants of local parabolic splines”, Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 192–198  mathnet  crossref  mathscinet  isi  elib
    3. E. V. Strelkova, V. T. Shevaldin, “On uniform Lebesgue constants of local exponential splines with equidistant knots”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 206–217  mathnet  crossref  mathscinet  isi  elib
    4. Yu. N. Subbotin, S. A. Telyakovskii, “Approximation of Derivatives by the Derivatives of Interpolating Splines”, Proc. Steklov Inst. Math., 243 (2003), 309–322  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:595
    Full-text PDF :251
    References:101
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025