Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 77, Issue 2, Pages 213–218
DOI: https://doi.org/10.4213/mzm2485
(Mi mzm2485)
 

On balanced bases

D. N. Ivanov

Tver State University
References:
Abstract: It is proved that either a given balanced basis of the algebra $(n+1)M_1\oplus M_n$ or the corresponding complementary basis is of rank $n+1$. This result enables us to claim that the algebra $(n+1)M_1\oplus M_n$ is balanced if and only if the matrix algebra $M_n$ admits a WP-decomposition, i.e., a family of $n+1$ subalgebras conjugate to the diagonal algebra and such that any two algebras in this family intersect orthogonally (with respect to the form $\operatorname{tr}XY$) and their intersection is the trivial subalgebra. Thus, the problem of whether or not the algebra $(n+1)M_1\oplus M_n$ is balanced is equivalent to the well-known Winnie-the-Pooh problem on the existence of an orthogonal decomposition of a simple Lie algebra of type $A_{n-1}$ into the sum of Cartan subalgebras.
Received: 13.05.2003
English version:
Mathematical Notes, 2005, Volume 77, Issue 2, Pages 194–198
DOI: https://doi.org/10.1007/s11006-005-0020-4
Bibliographic databases:
UDC: 512.64
Language: Russian
Citation: D. N. Ivanov, “On balanced bases”, Mat. Zametki, 77:2 (2005), 213–218; Math. Notes, 77:2 (2005), 194–198
Citation in format AMSBIB
\Bibitem{Iva05}
\by D.~N.~Ivanov
\paper On balanced bases
\jour Mat. Zametki
\yr 2005
\vol 77
\issue 2
\pages 213--218
\mathnet{http://mi.mathnet.ru/mzm2485}
\crossref{https://doi.org/10.4213/mzm2485}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2157091}
\zmath{https://zbmath.org/?q=an:1091.17006}
\elib{https://elibrary.ru/item.asp?id=9150070}
\transl
\jour Math. Notes
\yr 2005
\vol 77
\issue 2
\pages 194--198
\crossref{https://doi.org/10.1007/s11006-005-0020-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000227418800020}
\elib{https://elibrary.ru/item.asp?id=14365849}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-20144361969}
Linking options:
  • https://www.mathnet.ru/eng/mzm2485
  • https://doi.org/10.4213/mzm2485
  • https://www.mathnet.ru/eng/mzm/v77/i2/p213
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:303
    Full-text PDF :188
    References:40
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024