Abstract:
For the equation of mixed type
Lαu≡uxx+yuyy+αuy+λu=0,
where 0<α<1 and λ is a complex parameter, we obtain eigenvalues in a special domain by the method of separation of variables and construct the system of corresponding eigenfunctions of the Tricomi–Neumann spectral problem. We construct the solution of the Tricomi–Neumann problem as a sum of biorthogonal series.
Citation:
K. B. Sabitov, S. L. Bibakova, “Construction of Eigenfunctions of the Tricomi–Neumann Problem for Equations of Mixed Type with Characteristic Degeneration and Their Application”, Mat. Zametki, 74:1 (2003), 76–87; Math. Notes, 74:1 (2003), 70–80
\Bibitem{SabBib03}
\by K.~B.~Sabitov, S.~L.~Bibakova
\paper Construction of Eigenfunctions of the Tricomi--Neumann Problem for Equations of Mixed Type with Characteristic Degeneration and Their Application
\jour Mat. Zametki
\yr 2003
\vol 74
\issue 1
\pages 76--87
\mathnet{http://mi.mathnet.ru/mzm247}
\crossref{https://doi.org/10.4213/mzm247}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2010679}
\zmath{https://zbmath.org/?q=an:1082.35111}
\transl
\jour Math. Notes
\yr 2003
\vol 74
\issue 1
\pages 70--80
\crossref{https://doi.org/10.1023/A:1025019216707}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185172900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0347124998}
Linking options:
https://www.mathnet.ru/eng/mzm247
https://doi.org/10.4213/mzm247
https://www.mathnet.ru/eng/mzm/v74/i1/p76
This publication is cited in the following 6 articles:
B. I. Islomov, A. A. Abdullayev, “Bitsadze–Samarsky Type Nonlocal Boundary Value Problem for a Second Kind Mixed Equation with a Conjugation Condition of the Frankl Type”, Lobachevskii J Math, 45:3 (2024), 1145
A. A. Abdullaev, T. G. Ergashev, “Zadacha Puankare–Trikomi dlya uravneniya smeshannogo elliptiko-giperbolicheskogo tipa vtorogo roda”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2020, no. 65, 5–21
婷 张, “Discussion on the Attributes of Hejia Village Cellar”, ASS, 09:11 (2020), 1788
N. B. Islamov, “Analogue of Bitsadze–Samarskii problem for a class of parabolic-hyperbolic equation of second kind”, Ufa Math. J., 7:1 (2015), 31–45
M. S. Salakhitdinov, N. B. Islamov, “Nonlocal boundary-value problem with Bitsadze–Samarskii condition for equation of parabolic-hyperbolic type of the second kind”, Russian Math. (Iz. VUZ), 59:6 (2015), 34–42