Citation:
I. M. Oleinik, “On the essential self-adjointness of the Schrödinger operator on complete Riemannian manifolds”, Mat. Zametki, 54:3 (1993), 89–97; Math. Notes, 54:3 (1993), 934–939
\Bibitem{Ole93}
\by I.~M.~Oleinik
\paper On the essential self-adjointness of the Schr\"odinger operator on complete Riemannian manifolds
\jour Mat. Zametki
\yr 1993
\vol 54
\issue 3
\pages 89--97
\mathnet{http://mi.mathnet.ru/mzm2406}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1248286}
\zmath{https://zbmath.org/?q=an:0818.58047}
\transl
\jour Math. Notes
\yr 1993
\vol 54
\issue 3
\pages 934--939
\crossref{https://doi.org/10.1007/BF01209558}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993NL76800007}
Linking options:
https://www.mathnet.ru/eng/mzm2406
https://www.mathnet.ru/eng/mzm/v54/i3/p89
This publication is cited in the following 14 articles:
Ognjen Milatovic, Hemanth Saratchandran, “Essential Self-Adjointness of Perturbed Biharmonic Operators via Conformally Transformed Metrics”, Potential Anal, 56:4 (2022), 623
Ognjen Milatovic, “Self‐adjointness of perturbed biharmonic operators on Riemannian manifolds”, Mathematische Nachrichten, 290:17-18 (2017), 2948
Ognjen Milatovic, Françoise Truc, “Self-adjoint extensions of differential operators on Riemannian manifolds”, Ann Glob Anal Geom, 49:1 (2016), 87
Michel Bonnefont, Aldéric Joulin, “Intertwining Relations for One-Dimensional Diffusions and Application to Functional Inequalities”, Potential Anal, 41:4 (2014), 1005
Ognjen Milatovic, “A Sears-type self-adjointness result for discrete magnetic Schrödinger operators”, Journal of Mathematical Analysis and Applications, 396:2 (2012), 801
Ognjen Milatovic, “Essential Self-adjointness of Magnetic Schrödinger Operators on Locally Finite Graphs”, Integr. Equ. Oper. Theory, 71:1 (2011), 13
Yves Colin de Verdière, Nabila Torki-Hamza, Françoise Truc, “Essential self-adjointness for combinatorial Schrödinger operators III- Magnetic fields”, Annales de la Faculté des sciences de Toulouse : Mathématiques, 20:3 (2011), 599
Yves Colin de Verdière, Nabila Torki-Hamza, Françoise Truc, “Essential Self-adjointness for Combinatorial Schrödinger Operators II-Metrically non Complete Graphs”, Math Phys Anal Geom, 14:1 (2011), 21
Olivier Lablée, “Sur le spectre semi-classique d'un système intégrable de dimension 1 autour d'une singularité hyperbolique”, Annales de la Faculté des sciences de Toulouse : Mathématiques, 19:1 (2010), 191
M. Braverman, O. Milatovic, M. A. Shubin, “Essential self-adjointness of Schrödinger-type operators on manifolds”, Russian Math. Surveys, 57:4 (2002), 641–692
Mikhail Shubin, “Essential Self-Adjointness for Semi-bounded Magnetic Schrödinger Operators on Non-compact Manifolds”, Journal of Functional Analysis, 186:1 (2001), 92
Vladimir Kondrat'Ev, Mikhail Shubin, The Maz'ya Anniversary Collection, 1999, 185
Maxim Braverman, “On self-adjointness of a Schrödinger operator on differential forms”, Proc. Amer. Math. Soc., 126:2 (1998), 617