Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1993, Volume 54, Issue 3, Pages 89–97 (Mi mzm2406)  

This article is cited in 14 scientific papers (total in 14 papers)

On the essential self-adjointness of the Schrödinger operator on complete Riemannian manifolds

I. M. Oleinik

M. V. Lomonosov Moscow State University
References:
Received: 07.10.1992
English version:
Mathematical Notes, 1993, Volume 54, Issue 3, Pages 934–939
DOI: https://doi.org/10.1007/BF01209558
Bibliographic databases:
UDC: 517
Language: Russian
Citation: I. M. Oleinik, “On the essential self-adjointness of the Schrödinger operator on complete Riemannian manifolds”, Mat. Zametki, 54:3 (1993), 89–97; Math. Notes, 54:3 (1993), 934–939
Citation in format AMSBIB
\Bibitem{Ole93}
\by I.~M.~Oleinik
\paper On the essential self-adjointness of the Schr\"odinger operator on complete Riemannian manifolds
\jour Mat. Zametki
\yr 1993
\vol 54
\issue 3
\pages 89--97
\mathnet{http://mi.mathnet.ru/mzm2406}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1248286}
\zmath{https://zbmath.org/?q=an:0818.58047}
\transl
\jour Math. Notes
\yr 1993
\vol 54
\issue 3
\pages 934--939
\crossref{https://doi.org/10.1007/BF01209558}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993NL76800007}
Linking options:
  • https://www.mathnet.ru/eng/mzm2406
  • https://www.mathnet.ru/eng/mzm/v54/i3/p89
  • This publication is cited in the following 14 articles:
    1. Ognjen Milatovic, Hemanth Saratchandran, “Essential Self-Adjointness of Perturbed Biharmonic Operators via Conformally Transformed Metrics”, Potential Anal, 56:4 (2022), 623  crossref
    2. Ognjen Milatovic, “Self‐adjointness of perturbed biharmonic operators on Riemannian manifolds”, Mathematische Nachrichten, 290:17-18 (2017), 2948  crossref
    3. Ognjen Milatovic, Françoise Truc, “Self-adjoint extensions of differential operators on Riemannian manifolds”, Ann Glob Anal Geom, 49:1 (2016), 87  crossref
    4. Michel Bonnefont, Aldéric Joulin, “Intertwining Relations for One-Dimensional Diffusions and Application to Functional Inequalities”, Potential Anal, 41:4 (2014), 1005  crossref
    5. Ognjen Milatovic, “A Sears-type self-adjointness result for discrete magnetic Schrödinger operators”, Journal of Mathematical Analysis and Applications, 396:2 (2012), 801  crossref
    6. Ognjen Milatovic, “Essential Self-adjointness of Magnetic Schrödinger Operators on Locally Finite Graphs”, Integr. Equ. Oper. Theory, 71:1 (2011), 13  crossref
    7. Yves Colin de Verdière, Nabila Torki-Hamza, Françoise Truc, “Essential self-adjointness for combinatorial Schrödinger operators III- Magnetic fields”, Annales de la Faculté des sciences de Toulouse : Mathématiques, 20:3 (2011), 599  crossref
    8. Yves Colin de Verdière, Nabila Torki-Hamza, Françoise Truc, “Essential Self-adjointness for Combinatorial Schrödinger Operators II-Metrically non Complete Graphs”, Math Phys Anal Geom, 14:1 (2011), 21  crossref
    9. NABILA TORKI-HAMZA, “LAPLACIENS DE GRAPHES INFINIS I-GRAPHES MÉTRIQUEMENT COMPLETS”, Confluentes Math., 02:03 (2010), 333  crossref
    10. Olivier Lablée, “Sur le spectre semi-classique d'un système intégrable de dimension 1 autour d'une singularité hyperbolique”, Annales de la Faculté des sciences de Toulouse : Mathématiques, 19:1 (2010), 191  crossref
    11. M. Braverman, O. Milatovic, M. A. Shubin, “Essential self-adjointness of Schrödinger-type operators on manifolds”, Russian Math. Surveys, 57:4 (2002), 641–692  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    12. Mikhail Shubin, “Essential Self-Adjointness for Semi-bounded Magnetic Schrödinger Operators on Non-compact Manifolds”, Journal of Functional Analysis, 186:1 (2001), 92  crossref
    13. Vladimir Kondrat'Ev, Mikhail Shubin, The Maz'ya Anniversary Collection, 1999, 185  crossref
    14. Maxim Braverman, “On self-adjointness of a Schrödinger operator on differential forms”, Proc. Amer. Math. Soc., 126:2 (1998), 617  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:405
    Full-text PDF :131
    References:74
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025