|
This article is cited in 3 scientific papers (total in 3 papers)
Necessary and Sufficient Conditions for the Lipschitzian Invertibility of the Nonlinear Differential Mapping $d/dt-f$ in the Spaces $L_p({\mathbb R},{\mathbb R})$, $1\le p\le\infty$
V. E. Slyusarchuk Rovno State Technology University
Abstract:
We obtain necessary and sufficient conditions for the Lipschitzian invertibility of the differential mapping $d/dt-f$, where $f\colon{\mathbb R}\to{\mathbb R}$ is a continuous mapping, in the spaces $L_p({\mathbb R},{\mathbb R})$, $1\le p\le\infty$.
Received: 22.06.2000
Citation:
V. E. Slyusarchuk, “Necessary and Sufficient Conditions for the Lipschitzian Invertibility of the Nonlinear Differential Mapping $d/dt-f$ in the Spaces $L_p({\mathbb R},{\mathbb R})$, $1\le p\le\infty$”, Mat. Zametki, 73:6 (2003), 891–903; Math. Notes, 73:6 (2003), 843–854
Linking options:
https://www.mathnet.ru/eng/mzm238https://doi.org/10.4213/mzm238 https://www.mathnet.ru/eng/mzm/v73/i6/p891
|
|