Abstract:
We obtain necessary and sufficient conditions for the Lipschitzian invertibility of the differential mapping d/dt−f, where f:R→R is a continuous mapping, in the spaces Lp(R,R), 1⩽p⩽∞.
Citation:
V. E. Slyusarchuk, “Necessary and Sufficient Conditions for the Lipschitzian Invertibility of the Nonlinear Differential Mapping d/dt−f in the Spaces Lp(R,R), 1⩽p⩽∞”, Mat. Zametki, 73:6 (2003), 891–903; Math. Notes, 73:6 (2003), 843–854
\Bibitem{Sly03}
\by V.~E.~Slyusarchuk
\paper Necessary and Sufficient Conditions for the Lipschitzian Invertibility of the Nonlinear Differential Mapping $d/dt-f$ in the Spaces $L_p({\mathbb R},{\mathbb R})$, $1\le p\le\infty$
\jour Mat. Zametki
\yr 2003
\vol 73
\issue 6
\pages 891--903
\mathnet{http://mi.mathnet.ru/mzm238}
\crossref{https://doi.org/10.4213/mzm238}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2010659}
\zmath{https://zbmath.org/?q=an:1075.47027}
\transl
\jour Math. Notes
\yr 2003
\vol 73
\issue 6
\pages 843--854
\crossref{https://doi.org/10.1023/A:1024058015313}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183962500030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-1642462164}
Linking options:
https://www.mathnet.ru/eng/mzm238
https://doi.org/10.4213/mzm238
https://www.mathnet.ru/eng/mzm/v73/i6/p891
This publication is cited in the following 3 articles:
V. E. Slyusarchuk, “Necessary and sufficient conditions for the existence and uniqueness of a bounded solution of the equation $\dfrac{dx(t)}{dt}=f(x(t)+h_1(t))+h_2(t)$”, Sb. Math., 208:2 (2017), 255–268
Slyusarchuk V.Yu., “Conditions of Solvability for Nonlinear Differential Equations with Perturbations of the Solutions in the Space of Functions Bounded on the Axis”, Ukr. Math. J., 68:9 (2017), 1481–1493
V. E. Slyusarchuk, “Necessary and Sufficient Conditions for the Existence and $\varepsilon$-Uniqueness of Bounded Solutions of the Equation $x'=f(x)-h(t)$”, Math. Notes, 90:1 (2011), 136–141