Citation:
A. A. Shkalikov, R. O. Hryniv, “On an operator pencil arising in the problem of beam oscillation with internal damping”, Mat. Zametki, 56:2 (1994), 114–131; Math. Notes, 56:2 (1994), 840–851
\Bibitem{ShkHry94}
\by A.~A.~Shkalikov, R.~O.~Hryniv
\paper On an operator pencil arising in the problem of beam oscillation with internal damping
\jour Mat. Zametki
\yr 1994
\vol 56
\issue 2
\pages 114--131
\mathnet{http://mi.mathnet.ru/mzm2245}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1308926}
\zmath{https://zbmath.org/?q=an:0944.47031}
\transl
\jour Math. Notes
\yr 1994
\vol 56
\issue 2
\pages 840--851
\crossref{https://doi.org/10.1007/BF02110744}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994RH68200030}
Linking options:
https://www.mathnet.ru/eng/mzm2245
https://www.mathnet.ru/eng/mzm/v56/i2/p114
This publication is cited in the following 13 articles:
Yu. A. Tikhonov, “On the spectrum localization of an operator-function arising at studying oscillations of a viscoelastic pipeline with Kelvin–Voigt friction”, Moscow University Mathematics Bulletin, 77:2 (2022), 73–85
Yu. A. Tikhonov, “On the Properties of a Semigroup of Operators Generated by a Volterra Integro-Differential Equation Arising in the Theory of Viscoelasticity”, Diff Equat, 58:5 (2022), 662
A. G. Baskakov, D. B. Didenko, “Spectral Analysis of Operator Polynomials and Second-Order Differential Operators”, Math. Notes, 108:4 (2020), 477–491
Tikhonov Yu.A., “Analyticity of An Operator Semigroup Arising in Viscoelasticity Problems”, Differ. Equ., 56:6 (2020), 797–812
A. V. Davydov, Yu. A. Tikhonov, “On Properties of the Spectrum of an Operator Pencil Arising in Viscoelasticity Theory”, Math. Notes, 103:5 (2018), 841–845
A. V. Davydov, Yu. A. Tikhonov, “Study of Kelvin–Voigt Models Arising in Viscoelasticity”, Diff Equat, 54:12 (2018), 1620
V. V. Vlasov, N. A. Rautian, “Integrodifferential equations in viscoelasticity theory”, Russian Math. (Iz. VUZ), 56:6 (2012), 48–51
V. V. Vlasov, N. A. Rautian, A. S. Shamaev, “Analysis of operator models arising in problems of hereditary mechanics”, Journal of Mathematical Sciences, 201:5 (2014), 673–692
I. V. Gorokhova, “Small Transverse Vibrations of Visco-Elastic Rods”, Math. Notes, 89:6 (2011), 792–798
A. A. Vladimirov, “On the accumulation of eigenvalues of operator pencils connected with the problem of vibrations in a viscoelastic rod”, Math. Notes, 79:3 (2006), 342–355