Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1994, Volume 55, Issue 5, Pages 51–68 (Mi mzm2194)  

This article is cited in 18 scientific papers (total in 18 papers)

Properties and asymptotic behavior of solutions of some problems of one-dimensional motion of a viscous barotropic gas

A. A. Zlotnik, Nguen Zha Bao

Moscow Power Engineering Institute (Technical University)
References:
Received: 04.10.1993
English version:
Mathematical Notes, 1994, Volume 55, Issue 5, Pages 471–482
DOI: https://doi.org/10.1007/BF02110374
Bibliographic databases:
UDC: 517.958+533.7
Language: Russian
Citation: A. A. Zlotnik, Nguen Zha Bao, “Properties and asymptotic behavior of solutions of some problems of one-dimensional motion of a viscous barotropic gas”, Mat. Zametki, 55:5 (1994), 51–68; Math. Notes, 55:5 (1994), 471–482
Citation in format AMSBIB
\Bibitem{ZloNgu94}
\by A.~A.~Zlotnik, Nguen Zha Bao
\paper Properties and asymptotic behavior of solutions of some problems of one-dimensional motion of a viscous barotropic gas
\jour Mat. Zametki
\yr 1994
\vol 55
\issue 5
\pages 51--68
\mathnet{http://mi.mathnet.ru/mzm2194}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1295997}
\zmath{https://zbmath.org/?q=an:0828.76070}
\transl
\jour Math. Notes
\yr 1994
\vol 55
\issue 5
\pages 471--482
\crossref{https://doi.org/10.1007/BF02110374}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994QR40600006}
Linking options:
  • https://www.mathnet.ru/eng/mzm2194
  • https://www.mathnet.ru/eng/mzm/v55/i5/p51
  • This publication is cited in the following 18 articles:
    1. A. E. Mamontov, D. A. Prokudin, “Asymptotic Behavior of the Solution to the Initial-boundary Value Problem for One-dimensional Motions of a Barotropic Compressible Viscous Multifluid”, Lobachevskii J Math, 45:4 (2024), 1463  crossref
    2. D.A. Prokudin, “Stabilization of the Solution to the Initial-Boundary Value Problem for One-Dimensional Isothermal Equations of Viscous Compressible Multicomponent Media”, Izvestiya AltGU, 2023, no. 4(132), 73  crossref
    3. Dmitriy Prokudin, “On the Stabilization of the Solution to the Initial Boundary Value Problem for One-Dimensional Isothermal Equations of Viscous Compressible Multicomponent Media Dynamics”, Mathematics, 11:14 (2023), 3065  crossref
    4. Yuming Qin, Xiaona Yu, “Global existence and asymptotic behavior for the compressible Navier–Stokes equations with a non‐autonomous external force and a heat source”, Math Methods in App Sciences, 32:8 (2009), 1011  crossref
    5. Alexander Zlotnik, Mikhail Maksimov, “On symmetric equilibrium of an isothermal gas with a free boundary and a body force”, Abstract and Applied Analysis, 2006 (2006), 1  crossref
    6. ALEXANDER ZLOTNIK, “POWER-RATE ASYMPTOTIC EXPANSION FOR 1D VISCOUS HEAT-CONDUCTING GAS FLOWS”, Math. Models Methods Appl. Sci., 16:03 (2006), 397  crossref
    7. A. A. Zlotnik, B. Ducomet, “Stabilization rate and stability for viscous compressible barotropic symmetric flows with free boundary for a general mass force”, Sb. Math., 196:12 (2005), 1745–1799  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    8. Ducomet, B, “Lyapunov functional method for 1D radiative and reactive viscous gas dynamics”, Archive For Rational Mechanics and Analysis, 177:2 (2005), 185  crossref  mathscinet  zmath  adsnasa  isi
    9. Bernard Ducomet, Alexander Zlotnik, “Viscous compressible barotropic symmetric flows with free boundary under general mass force Part I: Uniform‐in‐time bounds and stabilization”, Math Methods in App Sciences, 28:7 (2005), 827  crossref
    10. B. Ducomet, A. Zlotnik, “Stabilization and stability for the spherically symmetric Navier–Stokes–Poisson system”, Applied Mathematics Letters, 18:10 (2005), 1190  crossref
    11. Bernard Ducomet, Alexander Zlotnik, “Stabilization for equations of one-dimensional viscous compressible heat-conducting media with nonmonotone equation of state”, Journal of Differential Equations, 194:1 (2003), 51  crossref
    12. Alexander Zlotnik, “Global behaviour of 1‐D viscous compressible barotropic flows with free boundary and self‐gravitation”, Math Methods in App Sciences, 26:8 (2003), 671  crossref
    13. Ling Hsiao, Song Jiang, Handbook of Differential Equations: Evolutionary Equations, 1, 2002, 287  crossref
    14. Patrick Penel, Ivan Straškraba, Applied Nonlinear Analysis, 2002, 427  crossref
    15. Bernard Ducomet, Alexander Zlotnik, “Stabilization for viscous compressible heat-conducting media equations with nonmonotone state functions”, Comptes Rendus. Mathématique, 334:2 (2002), 119  crossref
    16. B. Ducomet, A.A. Zlotnik, “Remark on the stabilization of a viscous barotropic medium with a nonmonotonic equation of state”, Applied Mathematics Letters, 14:8 (2001), 921  crossref
    17. A. A. Zlotnik, “On Nishida's problem”, Comput. Math. Math. Phys., 38:8 (1998), 1225–1232  mathnet  mathscinet  zmath
    18. A. A. Zlotnik, “Uniform estimates and stabilization of solutions to equations of one-dimensional motion of a multicomponent barotropic mixture”, Math. Notes, 58:2 (1995), 885–889  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :81
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025