Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2003, Volume 73, Issue 5, Pages 753–758
DOI: https://doi.org/10.4213/mzm216
(Mi mzm216)
 

Inverse Spectra with Two and Three Maps

O. D. Frolkina

M. V. Lomonosov Moscow State University
References:
Abstract: It is shown that, for any $1\le n<\infty$, there exist four maps of the $n$-dimensional cube to itself such that the limit of any inverse sequence of $n$-cubes is the limit of some sequence with only these four bonding maps. A universal continuum in the class of all limits of sequences of $n$-cubes is constructed as the limit of an inverse sequence of $n$-cubes with one bonding map. All compact sets of trivial shape are represented by using only three maps of the Hilbert cube to itself. Two maps of the closed interval to itself such that any Knaster continuum can be obtained as the limit of an inverse sequence with only these two bonding maps are constructed.
Received: 18.02.2002
English version:
Mathematical Notes, 2003, Volume 73, Issue 5, Pages 706–710
DOI: https://doi.org/10.1023/A:1024021007136
Bibliographic databases:
UDC: 515.122.572
Language: Russian
Citation: O. D. Frolkina, “Inverse Spectra with Two and Three Maps”, Mat. Zametki, 73:5 (2003), 753–758; Math. Notes, 73:5 (2003), 706–710
Citation in format AMSBIB
\Bibitem{Fro03}
\by O.~D.~Frolkina
\paper Inverse Spectra with Two and Three Maps
\jour Mat. Zametki
\yr 2003
\vol 73
\issue 5
\pages 753--758
\mathnet{http://mi.mathnet.ru/mzm216}
\crossref{https://doi.org/10.4213/mzm216}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1937070}
\zmath{https://zbmath.org/?q=an:1054.54008}
\transl
\jour Math. Notes
\yr 2003
\vol 73
\issue 5
\pages 706--710
\crossref{https://doi.org/10.1023/A:1024021007136}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183962500012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0345863610}
Linking options:
  • https://www.mathnet.ru/eng/mzm216
  • https://doi.org/10.4213/mzm216
  • https://www.mathnet.ru/eng/mzm/v73/i5/p753
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024