Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2003, Volume 73, Issue 4, Pages 511–526
DOI: https://doi.org/10.4213/mzm211
(Mi mzm211)
 

This article is cited in 6 scientific papers (total in 6 papers)

Multiplicative Products of Dedekind $\eta$-Functions and Group Representations

G. V. Voskresenskaya

Samara State University
Full-text PDF (247 kB) Citations (6)
References:
Abstract: In this paper, we findall metacyclic groups ($\langle a,b\colon a^m=e,\,b^s=e,\,b^{-1}ab=a^r\rangle$), where $m=10$, $14$, $15$, $20$, $21$, $22$, such that the cusp forms associated with all elements of these groups by an exact representation are multiplicative $\eta$-products. We also consider the correspondence between multiplicative $\eta$-products and elements of finite order in $SL(5,C)$ by the adjoint representation.
Received: 28.02.2002
English version:
Mathematical Notes, 2003, Volume 73, Issue 4, Pages 482–495
DOI: https://doi.org/10.1023/A:1023251003131
Bibliographic databases:
UDC: 511.334
Language: Russian
Citation: G. V. Voskresenskaya, “Multiplicative Products of Dedekind $\eta$-Functions and Group Representations”, Mat. Zametki, 73:4 (2003), 511–526; Math. Notes, 73:4 (2003), 482–495
Citation in format AMSBIB
\Bibitem{Vos03}
\by G.~V.~Voskresenskaya
\paper Multiplicative Products of Dedekind $\eta$-Functions and Group Representations
\jour Mat. Zametki
\yr 2003
\vol 73
\issue 4
\pages 511--526
\mathnet{http://mi.mathnet.ru/mzm211}
\crossref{https://doi.org/10.4213/mzm211}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1991898}
\zmath{https://zbmath.org/?q=an:1093.11029}
\transl
\jour Math. Notes
\yr 2003
\vol 73
\issue 4
\pages 482--495
\crossref{https://doi.org/10.1023/A:1023251003131}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182776700024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0347755146}
Linking options:
  • https://www.mathnet.ru/eng/mzm211
  • https://doi.org/10.4213/mzm211
  • https://www.mathnet.ru/eng/mzm/v73/i4/p511
  • This publication is cited in the following 6 articles:
    1. G. V. Voskresenskaya, “Funktsii Makkeya i elementarnye abelevy 2-gruppy”, Vestn. SamGU. Estestvennonauchn. ser., 2011, no. 5(86), 18–28  mathnet
    2. G. V. Voskresenskaya, “Finite Groups and Families of Modular Forms Associated with Them”, Math. Notes, 87:4 (2010), 497–509  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. G. V. Voskresenskaya, “Finite simple groups and multiplicative $\eta$-products”, J. Math. Sci. (N. Y.), 171:3 (2010), 344–356  mathnet  crossref
    4. G. V. Voskresenskaya, “Arithmetic properties of Shimura sums related to several modular forms”, J. Math. Sci., 182:4 (2012), 444–455  mathnet  crossref  mathscinet
    5. G. V. Voskresenskaya, “Semeistva modulyarnykh form, opredelyayuschie gruppu”, Vestn. SamGU. Estestvennonauchn. ser., 2009, no. 6(72), 21–34  mathnet
    6. G. V. Voskresenskaya, “On the problem of classification of finite groups associated to multiplicative $\eta$-products”, J. Math. Sci., 140:2 (2007), 206–220  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:445
    Full-text PDF :220
    References:49
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025