Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1995, Volume 58, Issue 6, Pages 878–889 (Mi mzm2107)  

Keldysh–Sedov formulas and differentiability with respect to the parameter of families of univalent functions in $n$-connected domains

A. S. Sorokin

Siberian Metallurgical Institute
References:
Abstract: We introduce families of functions $F_j(w,t)$ mapping $(n+1)$-connected domains onto circular domains in the $z$-plane. Denote by $\Phi_j(z,t)$ the families of functions inverse to $F_j(w,t)$. Theorems 1-?4 treat differentiability properties of these families with respect to $t$ at a point $t=t_0$. We present formulas for the first derivative with respect to $t$. Corollaries of the theorems obtained are given. As a particular case, we deduce the theorem due to Kufarev for the disk and the theorem of Kufarev and Genina (Semukhina) for the annulus.
Received: 28.09.1993
English version:
Mathematical Notes, 1995, Volume 58, Issue 6, Pages 1306–1314
DOI: https://doi.org/10.1007/BF02304890
Bibliographic databases:
Language: Russian
Citation: A. S. Sorokin, “Keldysh–Sedov formulas and differentiability with respect to the parameter of families of univalent functions in $n$-connected domains”, Mat. Zametki, 58:6 (1995), 878–889; Math. Notes, 58:6 (1995), 1306–1314
Citation in format AMSBIB
\Bibitem{Sor95}
\by A.~S.~Sorokin
\paper Keldysh--Sedov formulas and differentiability with respect to the parameter of families of univalent functions in $n$-connected domains
\jour Mat. Zametki
\yr 1995
\vol 58
\issue 6
\pages 878--889
\mathnet{http://mi.mathnet.ru/mzm2107}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1382096}
\zmath{https://zbmath.org/?q=an:0863.30011}
\transl
\jour Math. Notes
\yr 1995
\vol 58
\issue 6
\pages 1306--1314
\crossref{https://doi.org/10.1007/BF02304890}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995UJ43300025}
Linking options:
  • https://www.mathnet.ru/eng/mzm2107
  • https://www.mathnet.ru/eng/mzm/v58/i6/p878
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024