Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1995, Volume 58, Issue 6, Pages 828–836 (Mi mzm2102)  

This article is cited in 4 scientific papers (total in 4 papers)

On the relation between the Jackson and Jung constants of the spaces $L_ p$

V. I. Ivanov

Tula State University
Full-text PDF (548 kB) Citations (4)
References:
Abstract: For any infinitely metrizable compact Abelian group $G$, $1\leqslant p\leqslant q<\infty$, $n\in\mathbb N$, the following relations are proved:
$$ K_{pq}(G,n,G)=d_{pq}(G,n,G)=J(L_p(G),L_q(G))=\varkappa_{pq}, $$
where $K_{pq}(G,n,G)$ is the largest Jackson constant in the approximation of the system of characters by polynomials of order $n$, $d_{pq}(G,n,G)$ is the best Jackson constant, $J(L_p(G),L_q(G))$ is the Jung constant of the pair of real spaces $(L_p(G),L_q(G))$, and
$$ \begin{aligned} \varkappa_{pq}^q&=\sup\biggl\{\inf_c\int_0^1|f(x)-c|^q\,dx \\ &\qquad\qquad\times\biggl|\int_0^1\int_0^1|f(x)-f(y)|\biggr|^p\,dx\,dy\le1,\ f\in L_q[-1,1]\biggr\}. \end{aligned} $$
Received: 16.05.1995
English version:
Mathematical Notes, 1995, Volume 58, Issue 6, Pages 1269–1275
DOI: https://doi.org/10.1007/BF02304885
Bibliographic databases:
Language: Russian
Citation: V. I. Ivanov, “On the relation between the Jackson and Jung constants of the spaces $L_ p$”, Mat. Zametki, 58:6 (1995), 828–836; Math. Notes, 58:6 (1995), 1269–1275
Citation in format AMSBIB
\Bibitem{Iva95}
\by V.~I.~Ivanov
\paper On~the relation between the Jackson and Jung constants of the spaces $L_ p$
\jour Mat. Zametki
\yr 1995
\vol 58
\issue 6
\pages 828--836
\mathnet{http://mi.mathnet.ru/mzm2102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1382091}
\zmath{https://zbmath.org/?q=an:0855.41019}
\transl
\jour Math. Notes
\yr 1995
\vol 58
\issue 6
\pages 1269--1275
\crossref{https://doi.org/10.1007/BF02304885}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995UJ43300020}
Linking options:
  • https://www.mathnet.ru/eng/mzm2102
  • https://www.mathnet.ru/eng/mzm/v58/i6/p828
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:454
    Full-text PDF :117
    References:66
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024