|
This article is cited in 4 scientific papers (total in 4 papers)
On the relation between the Jackson and Jung constants of the spaces $L_ p$
V. I. Ivanov Tula State University
Abstract:
For any infinitely metrizable compact Abelian group $G$, $1\leqslant p\leqslant q<\infty$, $n\in\mathbb N$, the following relations are proved:
$$
K_{pq}(G,n,G)=d_{pq}(G,n,G)=J(L_p(G),L_q(G))=\varkappa_{pq},
$$
where $K_{pq}(G,n,G)$ is the largest Jackson constant in the approximation of the system of characters by polynomials of order $n$, $d_{pq}(G,n,G)$ is the best Jackson constant, $J(L_p(G),L_q(G))$ is the Jung constant of the pair of real spaces $(L_p(G),L_q(G))$, and
$$
\begin{aligned}
\varkappa_{pq}^q&=\sup\biggl\{\inf_c\int_0^1|f(x)-c|^q\,dx
\\
&\qquad\qquad\times\biggl|\int_0^1\int_0^1|f(x)-f(y)|\biggr|^p\,dx\,dy\le1,\ f\in L_q[-1,1]\biggr\}.
\end{aligned}
$$
Received: 16.05.1995
Citation:
V. I. Ivanov, “On the relation between the Jackson and Jung constants of the spaces $L_ p$”, Mat. Zametki, 58:6 (1995), 828–836; Math. Notes, 58:6 (1995), 1269–1275
Linking options:
https://www.mathnet.ru/eng/mzm2102 https://www.mathnet.ru/eng/mzm/v58/i6/p828
|
Statistics & downloads: |
Abstract page: | 447 | Full-text PDF : | 116 | References: | 64 | First page: | 3 |
|