Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1995, Volume 58, Issue 6, Pages 803–817 (Mi mzm2100)  

This article is cited in 4 scientific papers (total in 4 papers)

The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians

V. V. Belov, M. F. Kondrat'eva

Moscow State Institute of Electronics and Mathematics
References:
Abstract: An infinite system of ordinary differential equations for $\bar x$, $\bar p$, and for averages of a set of operators is derived for quantum-mechanical problems with a $(K\times K)$ matrix Hamiltonian $\mathscr H(\hat x,\hat p)$, $x\in\mathbb R^N$. The set of operators is chosen to be basis in the space $\mathrm{Mat}_K\mathbb C\otimes U(\mathscr W_N)$, where $U(\mathscr W_N)$ is the universal enveloping algebra of the Heisenberg–Weyl algebra $\mathscr W_N$, generated by the time-dependent operators $\hat I$, $\hat x-\bar x(t)\cdot\hat I$, $\hat p-\bar p(t)\cdot\hat I$, where $\hat I$ is the identity operator and $\bar x$, $\bar p$ are the averages of the position and momentum operators. The system in question can be written in Hamiltonian form; the corresponding Poisson bracket is degenerate and is equal to the sum of the standard bracket on $\mathbb R^{2N}$ with respect to the variables $(\bar x,\bar p)$ and the generalized Dirac bracket with respect to the other variables. The possibility of obtaining finite-dimensional approximations to the infinite-dimensional system in the semiclassical limit $\hbar\to0$ is investigated.
Received: 25.12.1994
English version:
Mathematical Notes, 1995, Volume 58, Issue 6, Pages 1251–1261
DOI: https://doi.org/10.1007/BF02304883
Bibliographic databases:
Language: Russian
Citation: V. V. Belov, M. F. Kondrat'eva, “The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians”, Mat. Zametki, 58:6 (1995), 803–817; Math. Notes, 58:6 (1995), 1251–1261
Citation in format AMSBIB
\Bibitem{BelKon95}
\by V.~V.~Belov, M.~F.~Kondrat'eva
\paper The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians
\jour Mat. Zametki
\yr 1995
\vol 58
\issue 6
\pages 803--817
\mathnet{http://mi.mathnet.ru/mzm2100}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1382089}
\zmath{https://zbmath.org/?q=an:0854.34078}
\transl
\jour Math. Notes
\yr 1995
\vol 58
\issue 6
\pages 1251--1261
\crossref{https://doi.org/10.1007/BF02304883}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995UJ43300018}
Linking options:
  • https://www.mathnet.ru/eng/mzm2100
  • https://www.mathnet.ru/eng/mzm/v58/i6/p803
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:254
    Full-text PDF :69
    References:47
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024