Abstract:
An infinite system of ordinary differential equations for ˉx¯x, ˉp¯p, and for averages of a set of operators is derived for quantum-mechanical problems with a (K×K)(K×K) matrix Hamiltonian H(ˆx,ˆp), x∈RN. The set of operators is chosen to be basis in the space MatKC⊗U(WN), where U(WN) is the universal enveloping algebra of the Heisenberg–Weyl algebra WN, generated by the time-dependent operators ˆI, ˆx−ˉx(t)⋅ˆI, ˆp−ˉp(t)⋅ˆI, where ˆI is the identity operator and ˉx, ˉp are the averages of the position and momentum operators. The system in question can be written in Hamiltonian form; the corresponding Poisson bracket is degenerate and is equal to the sum of the standard bracket on R2N with respect to the variables (ˉx,ˉp) and the generalized Dirac bracket with respect to the other variables. The possibility of obtaining finite-dimensional approximations to the infinite-dimensional system in the semiclassical limit ℏ→0 is investigated.
Citation:
V. V. Belov, M. F. Kondrat'eva, “The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians”, Mat. Zametki, 58:6 (1995), 803–817; Math. Notes, 58:6 (1995), 1251–1261
\Bibitem{BelKon95}
\by V.~V.~Belov, M.~F.~Kondrat'eva
\paper The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians
\jour Mat. Zametki
\yr 1995
\vol 58
\issue 6
\pages 803--817
\mathnet{http://mi.mathnet.ru/mzm2100}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1382089}
\zmath{https://zbmath.org/?q=an:0854.34078}
\transl
\jour Math. Notes
\yr 1995
\vol 58
\issue 6
\pages 1251--1261
\crossref{https://doi.org/10.1007/BF02304883}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995UJ43300018}
Linking options:
https://www.mathnet.ru/eng/mzm2100
https://www.mathnet.ru/eng/mzm/v58/i6/p803
This publication is cited in the following 4 articles:
V. V. Belov, F. N. Litvinets, A. Yu. Trifonov, “Semiclassical spectral series of a Hartree-type operator corresponding
to a rest point of the classical Hamilton–Ehrenfest system”, Theoret. and Math. Phys., 150:1 (2007), 21–33
V V Belov, M F Kondratieva, A Yu Trifonov, “Semiclassical spectrum for a Hartree-type equation corresponding to a rest point of the Hamilton–Ehrenfest system”, J. Phys. A: Math. Gen., 39:34 (2006), 10821
V. V. Belov, A. Yu. Trifonov, A. V. Shapovalov, “Semiclassical Trajectory-Coherent Approximations of Hartree-Type Equations”, Theoret. and Math. Phys., 130:3 (2002), 391–418
T A Osborn, M F Kondrat'eva, G C Tabisz, B R McQuarrie, “Mixed Weyl symbol calculus and spectral line shape theory”, J. Phys. A: Math. Gen., 32:22 (1999), 4149