Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1995, Volume 58, Issue 6, Pages 803–817 (Mi mzm2100)  

This article is cited in 4 scientific papers (total in 4 papers)

The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians

V. V. Belov, M. F. Kondrat'eva

Moscow State Institute of Electronics and Mathematics
References:
Abstract: An infinite system of ordinary differential equations for ˉx¯x, ˉp¯p, and for averages of a set of operators is derived for quantum-mechanical problems with a (K×K)(K×K) matrix Hamiltonian H(ˆx,ˆp), xRN. The set of operators is chosen to be basis in the space MatKCU(WN), where U(WN) is the universal enveloping algebra of the Heisenberg–Weyl algebra WN, generated by the time-dependent operators ˆI, ˆxˉx(t)ˆI, ˆpˉp(t)ˆI, where ˆI is the identity operator and ˉx, ˉp are the averages of the position and momentum operators. The system in question can be written in Hamiltonian form; the corresponding Poisson bracket is degenerate and is equal to the sum of the standard bracket on R2N with respect to the variables (ˉx,ˉp) and the generalized Dirac bracket with respect to the other variables. The possibility of obtaining finite-dimensional approximations to the infinite-dimensional system in the semiclassical limit 0 is investigated.
Received: 25.12.1994
English version:
Mathematical Notes, 1995, Volume 58, Issue 6, Pages 1251–1261
DOI: https://doi.org/10.1007/BF02304883
Bibliographic databases:
Language: Russian
Citation: V. V. Belov, M. F. Kondrat'eva, “The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians”, Mat. Zametki, 58:6 (1995), 803–817; Math. Notes, 58:6 (1995), 1251–1261
Citation in format AMSBIB
\Bibitem{BelKon95}
\by V.~V.~Belov, M.~F.~Kondrat'eva
\paper The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians
\jour Mat. Zametki
\yr 1995
\vol 58
\issue 6
\pages 803--817
\mathnet{http://mi.mathnet.ru/mzm2100}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1382089}
\zmath{https://zbmath.org/?q=an:0854.34078}
\transl
\jour Math. Notes
\yr 1995
\vol 58
\issue 6
\pages 1251--1261
\crossref{https://doi.org/10.1007/BF02304883}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995UJ43300018}
Linking options:
  • https://www.mathnet.ru/eng/mzm2100
  • https://www.mathnet.ru/eng/mzm/v58/i6/p803
  • This publication is cited in the following 4 articles:
    1. V. V. Belov, F. N. Litvinets, A. Yu. Trifonov, “Semiclassical spectral series of a Hartree-type operator corresponding to a rest point of the classical Hamilton–Ehrenfest system”, Theoret. and Math. Phys., 150:1 (2007), 21–33  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. V V Belov, M F Kondratieva, A Yu Trifonov, “Semiclassical spectrum for a Hartree-type equation corresponding to a rest point of the Hamilton–Ehrenfest system”, J. Phys. A: Math. Gen., 39:34 (2006), 10821  crossref
    3. V. V. Belov, A. Yu. Trifonov, A. V. Shapovalov, “Semiclassical Trajectory-Coherent Approximations of Hartree-Type Equations”, Theoret. and Math. Phys., 130:3 (2002), 391–418  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. T A Osborn, M F Kondrat'eva, G C Tabisz, B R McQuarrie, “Mixed Weyl symbol calculus and spectral line shape theory”, J. Phys. A: Math. Gen., 32:22 (1999), 4149  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :77
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025