|
This article is cited in 1 scientific paper (total in 1 paper)
A construction of complete minimal, but not uniformly minimal, exponential systems with real separable spectrum in $L^p$ and $C$
A. M. Sedletskii Moscow Power Engineering Institute (Technical University)
Abstract:
We construct real separable sequences $\{\lambda_n\}$ such that the corresponding systems of exponentials $\exp(i\lambda_nt)$ are complete and minimal, but not uniformly minimal, in the spaces $L^1(-\pi,\pi)$, $L^p(-\pi,\pi)$, $1\le p<\infty$, $C[-\pi,\pi]$.
Received: 15.03.1994
Citation:
A. M. Sedletskii, “A construction of complete minimal, but not uniformly minimal, exponential systems with real separable spectrum in $L^p$ and $C$”, Mat. Zametki, 58:4 (1995), 582–595; Math. Notes, 58:4 (1995), 1084–1093
Linking options:
https://www.mathnet.ru/eng/mzm2078 https://www.mathnet.ru/eng/mzm/v58/i4/p582
|
|