Abstract:
Systems of vectors determining an admissible octahedron in a lattice are considered. We discuss the property that such a system may be complemented to a basis of this lattice.
Citation:
N. G. Moshchevitin, “The defect of an admissible octahedron in a lattice”, Mat. Zametki, 58:4 (1995), 558–568; Math. Notes, 58:4 (1995), 1066–1073
\Bibitem{Mos95}
\by N.~G.~Moshchevitin
\paper The defect of an admissible octahedron in a~lattice
\jour Mat. Zametki
\yr 1995
\vol 58
\issue 4
\pages 558--568
\mathnet{http://mi.mathnet.ru/mzm2076}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1378336}
\zmath{https://zbmath.org/?q=an:0855.52005}
\transl
\jour Math. Notes
\yr 1995
\vol 58
\issue 4
\pages 1066--1073
\crossref{https://doi.org/10.1007/BF02305095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TW84800028}
Linking options:
https://www.mathnet.ru/eng/mzm2076
https://www.mathnet.ru/eng/mzm/v58/i4/p558
This publication is cited in the following 7 articles:
Mikhail Fadin, “Bounds on the defect of an octahedron in a rational lattice”, Discrete Applied Mathematics, 344 (2024), 102
Fadin M., “Defect of An Octahedron in a Rational Lattice”, Discret Appl. Math., 276:SI (2020), 37–43
M. A. Fadin, A. M. Raigorodskii, “Maximum defect of an admissible octahedron in a rational lattice”, Russian Math. Surveys, 74:3 (2019), 552–554
A. A. Bagan, A. M. Raigorodskii, “Defect of an Admissible Octahedron in a Centering of an Integer Lattice Generated by a Given Number of Vectors”, Math. Notes, 99:3 (2016), 457–459
A. M. Raigorodskii, “On a problem in the geometry of numbers”, Tr. In-ta matem., 15:1 (2007), 111–117
A. M. Raigorodskii, “A Probabilistic Approach to the Problem of the Defects of Admissible Sets in a Lattice”, Math. Notes, 68:6 (2000), 770–774
A. M. Raigorodskii, “The defects of admissible balls and octahedra in a lattice, and systems of generic representatives”, Sb. Math., 189:6 (1998), 931–954