Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2003, Volume 73, Issue 4, Pages 590–602
DOI: https://doi.org/10.4213/mzm207
(Mi mzm207)
 

On the Global Stability of Solutions of Moment Systems in Nonequilibrium Thermodynamics

E. V. Radkevich

M. V. Lomonosov Moscow State University
References:
Abstract: In this paper, we study the linearization of the Cauchy problem and the mixed problem for the system of Grad–Hermite moments in nonequilibrium thermodynamics in the neighborhood of the equilibrium state. Stability conditions for solutions of the Cauchy problem are proved as a generalization of the classical Hermite–Biller theorem on stable polynomials. For the mixed problem, we prove an analog of the Vishik–Lyusternik theorem on small singular perturbations of general elliptic problems. The last observation allows us to introduce the Shapiro–Lopatinskii condition, which implies the well-posedness of the mixed problem.
Received: 24.10.2002
Revised: 25.11.2002
English version:
Mathematical Notes, 2003, Volume 73, Issue 4, Pages 551–561
DOI: https://doi.org/10.1023/A:1023215422695
Bibliographic databases:
UDC: 517
Language: Russian
Citation: E. V. Radkevich, “On the Global Stability of Solutions of Moment Systems in Nonequilibrium Thermodynamics”, Mat. Zametki, 73:4 (2003), 590–602; Math. Notes, 73:4 (2003), 551–561
Citation in format AMSBIB
\Bibitem{Rad03}
\by E.~V.~Radkevich
\paper On the Global Stability of Solutions of Moment Systems in Nonequilibrium Thermodynamics
\jour Mat. Zametki
\yr 2003
\vol 73
\issue 4
\pages 590--602
\mathnet{http://mi.mathnet.ru/mzm207}
\crossref{https://doi.org/10.4213/mzm207}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1991905}
\zmath{https://zbmath.org/?q=an:1052.82024}
\transl
\jour Math. Notes
\yr 2003
\vol 73
\issue 4
\pages 551--561
\crossref{https://doi.org/10.1023/A:1023215422695}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182776700031}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0347755142}
Linking options:
  • https://www.mathnet.ru/eng/mzm207
  • https://doi.org/10.4213/mzm207
  • https://www.mathnet.ru/eng/mzm/v73/i4/p590
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:330
    Full-text PDF :204
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024