Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1995, Volume 58, Issue 3, Pages 411–418 (Mi mzm2057)  

This article is cited in 25 scientific papers (total in 25 papers)

The N1N1-property of maps and Luzin's condition (N)(N)

S. P. Ponomarev

Moscow State Institute of Steel and Alloys (Technological University)
References:
Abstract: A function f:GRn, where G is an open set in Rn, has the N1-property if for all ERn we have {|E|=0|f1(E)|=0} (|| is the Lebesgue measure). The article is concerned with the relations between the N1-property of functions, the maximal rank of derivatives, and the differentiability almost everywhere of composite functions.
Received: 18.05.1994
English version:
Mathematical Notes, 1995, Volume 58, Issue 3, Pages 960–965
DOI: https://doi.org/10.1007/BF02304773
Bibliographic databases:
Language: Russian
Citation: S. P. Ponomarev, “The N1-property of maps and Luzin's condition (N)”, Mat. Zametki, 58:3 (1995), 411–418; Math. Notes, 58:3 (1995), 960–965
Citation in format AMSBIB
\Bibitem{Pon95}
\by S.~P.~Ponomarev
\paper The $N^{-1}$-property of maps and Luzin's condition $(N)$
\jour Mat. Zametki
\yr 1995
\vol 58
\issue 3
\pages 411--418
\mathnet{http://mi.mathnet.ru/mzm2057}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1368549}
\zmath{https://zbmath.org/?q=an:0862.26005}
\transl
\jour Math. Notes
\yr 1995
\vol 58
\issue 3
\pages 960--965
\crossref{https://doi.org/10.1007/BF02304773}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TW84800009}
Linking options:
  • https://www.mathnet.ru/eng/mzm2057
  • https://www.mathnet.ru/eng/mzm/v58/i3/p411
  • This publication is cited in the following 25 articles:
    1. Anatoly Golberg, Toshiyuki Sugawa, Matti Vuorinen, “Modulus estimates of semirings with applications to boundary extension problems”, Anal.Math.Phys., 15:1 (2025)  crossref
    2. Evgeny O. Sevost'yanov, Valery A. Targonskii, Nataliya S. Ilkevych, “On quasilinear Beltrami equations with restrictions on tangential dilation”, J Math Sci, 2025  crossref
    3. M. P. Savelov, “Moschnost kriteriya, osnovannogo na odnovremennom primenenii «Monobit Test», «Frequency Test within a Block» i «Serial Test»”, Diskret. matem., 35:4 (2023), 79–114  mathnet  crossref
    4. Elena Afanas'eva, Anatoly Golberg, Fields Institute Communications, 87, Function Spaces, Theory and Applications, 2023, 1  crossref
    5. Evgeny Sevost'yanov, Developments in Mathematics, 78, Mappings with Direct and Inverse Poletsky Inequalities, 2023, 1  crossref
    6. Evgeny Sevost'yanov, Developments in Mathematics, 78, Mappings with Direct and Inverse Poletsky Inequalities, 2023, 281  crossref
    7. O. Dovhopiatyi, E. Sevost'yanov, “On Beltrami equations with inverse conditions and hydrodynamic normalization”, Acta Math. Hungar., 170:1 (2023), 244  crossref
    8. Evgeny Sevost'yanov, Valery Targonskii, “On the Inverse Poletsky Inequality with a Cotangent Dilatation”, Comput. Methods Funct. Theory, 2023  crossref
    9. Oleksandr Dovhopiatyi, Evgeny Sevost'yanov, “On the inverse Ki-inequality for one class of mappings”, Filomat, 37:24 (2023), 8145  crossref
    10. Evgeny O. Sevost'yanov, “The inverse Poletsky inequality in one class of mappings”, J Math Sci, 264:4 (2022), 455  crossref
    11. Elena Afanas'eva, Anatoly Golberg, “Topological mappings of finite area distortion”, Anal.Math.Phys., 12:2 (2022)  crossref
    12. S. K. Vodopyanov, A. O. Tomilov, “Functional and analytic properties of a class of mappings in quasi-conformal analysis”, Izv. Math., 85:5 (2021), 883–931  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    13. Evgeny O. Sevost'yanov, “On the existence of solutions of the Beltrami equations with conditions on inverse dilatations”, J Math Sci, 258:3 (2021), 338  crossref
    14. Evgeny Sevost'yanov, Sergei Skvortsov, “Logarithmic Hölder continuous mappings and Beltrami equation”, Anal.Math.Phys., 11:3 (2021)  crossref
    15. Evgeny Sevost'yanov, “On the existence of solutions of the Beltrami equations with conditions on inverse dilatations”, UMB, 18:2 (2021), 243  crossref
    16. Oleksandr Dovhopiatyi, Evgeny Sevost'yanov, “On the compactness of classes of the solutions of the Dirichlet problem”, UMB, 18:3 (2021), 319  crossref
    17. S. K. Vodopyanov, “Composition operators on weighted Sobolev spaces and the theory of Qp-homeomorphisms”, Dokl. Math., 102:2 (2020), 371–375  mathnet  crossref  crossref  zmath  elib
    18. L. Kleprlík, A. O. Molchanova, T. Roskovec, “Example of a smooth homeomorphism violating the Luzin N1 property”, Siberian Math. J., 60:5 (2019), 886–895  mathnet  crossref  crossref  isi  elib
    19. Anatoly Golberg, Ruslan Salimov, Trends in Mathematics, Complex Analysis and Dynamical Systems, 2018, 129  crossref
    20. Stanisław Kowalczyk, Małgorzata Turowska, “On the PropertyN-1”, Abstract and Applied Analysis, 2016 (2016), 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:476
    Full-text PDF :156
    References:72
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025