Abstract:
A function f:G→Rn, where G is an open set in Rn, has the N−1-property if for all E⊂Rn we have {|E|=0⇒|f−1(E)|=0} (|⋅| is the Lebesgue measure). The article is concerned with the relations between the N−1-property of functions, the maximal rank of derivatives, and the differentiability almost everywhere of composite functions.
This publication is cited in the following 25 articles:
Anatoly Golberg, Toshiyuki Sugawa, Matti Vuorinen, “Modulus estimates of semirings with applications to boundary extension problems”, Anal.Math.Phys., 15:1 (2025)
Evgeny O. Sevost'yanov, Valery A. Targonskii, Nataliya S. Ilkevych, “On quasilinear Beltrami equations with restrictions on tangential dilation”, J Math Sci, 2025
M. P. Savelov, “Moschnost kriteriya, osnovannogo na odnovremennom primenenii «Monobit Test», «Frequency Test within a Block» i «Serial Test»”, Diskret. matem., 35:4 (2023), 79–114
Elena Afanas'eva, Anatoly Golberg, Fields Institute Communications, 87, Function Spaces, Theory and Applications, 2023, 1
Evgeny Sevost'yanov, Developments in Mathematics, 78, Mappings with Direct and Inverse Poletsky Inequalities, 2023, 1
Evgeny Sevost'yanov, Developments in Mathematics, 78, Mappings with Direct and Inverse Poletsky Inequalities, 2023, 281
O. Dovhopiatyi, E. Sevost'yanov, “On Beltrami equations with inverse conditions and hydrodynamic normalization”, Acta Math. Hungar., 170:1 (2023), 244
Evgeny Sevost'yanov, Valery Targonskii, “On the Inverse Poletsky Inequality with a Cotangent Dilatation”, Comput. Methods Funct. Theory, 2023
Oleksandr Dovhopiatyi, Evgeny Sevost'yanov, “On the inverse Ki-inequality for one class of mappings”, Filomat, 37:24 (2023), 8145
Evgeny O. Sevost'yanov, “The inverse Poletsky inequality in one class of mappings”, J Math Sci, 264:4 (2022), 455
Elena Afanas'eva, Anatoly Golberg, “Topological mappings of finite area distortion”, Anal.Math.Phys., 12:2 (2022)
S. K. Vodopyanov, A. O. Tomilov, “Functional and analytic properties of a class of mappings in quasi-conformal analysis”, Izv. Math., 85:5 (2021), 883–931
Evgeny O. Sevost'yanov, “On the existence of solutions of the Beltrami equations with conditions on inverse dilatations”, J Math Sci, 258:3 (2021), 338
Evgeny Sevost'yanov, Sergei Skvortsov, “Logarithmic Hölder continuous mappings and Beltrami equation”, Anal.Math.Phys., 11:3 (2021)
Evgeny Sevost'yanov, “On the existence of solutions of the Beltrami equations with conditions on inverse dilatations”, UMB, 18:2 (2021), 243
Oleksandr Dovhopiatyi, Evgeny Sevost'yanov, “On the compactness of classes of the solutions of the Dirichlet problem”, UMB, 18:3 (2021), 319
S. K. Vodopyanov, “Composition operators on weighted Sobolev spaces and the theory of Qp-homeomorphisms”, Dokl. Math., 102:2 (2020), 371–375
L. Kleprlík, A. O. Molchanova, T. Roskovec, “Example of a smooth homeomorphism violating the Luzin N−1 property”, Siberian Math. J., 60:5 (2019), 886–895
Anatoly Golberg, Ruslan Salimov, Trends in Mathematics, Complex Analysis and Dynamical Systems, 2018, 129
Stanisław Kowalczyk, Małgorzata Turowska, “On the PropertyN-1”, Abstract and Applied Analysis, 2016 (2016), 1