|
This article is cited in 3 scientific papers (total in 3 papers)
Rate of divergence of some integrals
S. V. Konyagina, A. Yu. Popovb a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b M. V. Lomonosov Moscow State University
Abstract:
Lower bounds for the absolute values of the functions $M(x)=\sum_{n\le x}\mu(n)$ and $\Delta(x)=\Bigl(\sum_{n\le x}\Lambda(n)\Bigr)-x$ , where $\mu$ is the Möbius function and $\Lambda$ is the Manholdt function, are obtained.
Received: 01.12.1994
Citation:
S. V. Konyagin, A. Yu. Popov, “Rate of divergence of some integrals”, Mat. Zametki, 58:2 (1995), 243–255; Math. Notes, 58:2 (1995), 841–849
Linking options:
https://www.mathnet.ru/eng/mzm2040 https://www.mathnet.ru/eng/mzm/v58/i2/p243
|
Statistics & downloads: |
Abstract page: | 537 | Full-text PDF : | 147 | References: | 40 | First page: | 3 |
|