Abstract:
We consider a triple Fourier-type integral that represents a solution to the KdV equation linearized on an N-soliton potential. Assuming that the parameters of the potential depend on the slow time t, we construct an asymptotics of this integral as ε→0 uniform with respect to x, t up to large time 0<t⩽O(ε−1).
Citation:
L. A. Kalyakin, “Asymptotics of the first correction in the perturbation of the N-soliton solution to the KdV equation”, Mat. Zametki, 58:2 (1995), 204–217; Math. Notes, 58:2 (1995), 814–823
\Bibitem{Kal95}
\by L.~A.~Kalyakin
\paper Asymptotics of the first correction in the perturbation of the $N$-soliton solution to the KdV equation
\jour Mat. Zametki
\yr 1995
\vol 58
\issue 2
\pages 204--217
\mathnet{http://mi.mathnet.ru/mzm2037}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1367219}
\zmath{https://zbmath.org/?q=an:0849.35120}
\transl
\jour Math. Notes
\yr 1995
\vol 58
\issue 2
\pages 814--823
\crossref{https://doi.org/10.1007/BF02304103}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TV39900018}
Linking options:
https://www.mathnet.ru/eng/mzm2037
https://www.mathnet.ru/eng/mzm/v58/i2/p204
This publication is cited in the following 2 articles:
V. A. Lazarev, “Perturbation of a two-soliton solution of the Korteweg–de Vries equation in the case of close amplitudes”, Theoret. and Math. Phys., 118:3 (1999), 341–346
L. A. Kalyakin, V. A. Lazarev, “Perturbation of the two-soliton solution of the KdV equation”, Theoret. and Math. Phys., 112:1 (1997), 866–874