Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1995, Volume 58, Issue 1, Pages 127–138 (Mi mzm2030)  

Distance matrices for points on a line, on a circle, and at the vertices of an $n$-dimensional cube

S. M. Èrtel'
References:
Abstract: For $n$ points $A_i$, $i=1,2,\dots,n$, in Euclidean space $\mathbb R^m$, the distance matrix is defined as a matrix of the form $D=(D_{i,j})_{\substack{i=1,n\\j=1,n}}$, where the $D_{i,j}$ are the distances between the points $A_i$ and $A_j$ . Two configurations of points $A_i$, $i=1,2,\dots,n$, are considered. These are the configurations of points all lying on a circle or on a line and of points at the vertices of an $m$-dimensional cube. In the first case, the inverse matrix is obtained in explicit form. In the second case, it is shown that the complete set of eigenvectors is composed of the columns of the Hadamard matrix of appropriate order. Using the fact that distance matrices in Euclidean space are nondegenerate, several inequalities are derived for solving the system of linear equations whose matrix is a given distance matrix.
Received: 27.02.1990
English version:
Mathematical Notes, 1995, Volume 58, Issue 1, Pages 762–769
DOI: https://doi.org/10.1007/BF02306186
Bibliographic databases:
Language: Russian
Citation: S. M. Èrtel', “Distance matrices for points on a line, on a circle, and at the vertices of an $n$-dimensional cube”, Mat. Zametki, 58:1 (1995), 127–138; Math. Notes, 58:1 (1995), 762–769
Citation in format AMSBIB
\Bibitem{Ert95}
\by S.~M.~\`Ertel'
\paper Distance matrices for points on a~line, on~a~circle, and at the vertices of an $n$-dimensional cube
\jour Mat. Zametki
\yr 1995
\vol 58
\issue 1
\pages 127--138
\mathnet{http://mi.mathnet.ru/mzm2030}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1361118}
\zmath{https://zbmath.org/?q=an:0854.15010}
\transl
\jour Math. Notes
\yr 1995
\vol 58
\issue 1
\pages 762--769
\crossref{https://doi.org/10.1007/BF02306186}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TV39900011}
Linking options:
  • https://www.mathnet.ru/eng/mzm2030
  • https://www.mathnet.ru/eng/mzm/v58/i1/p127
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025