Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1995, Volume 58, Issue 1, Pages 111–118 (Mi mzm2028)  

This article is cited in 7 scientific papers (total in 7 papers)

On the global theory of projective mappings

S. E. Stepanov

Vladimir State Pedagogical University
Full-text PDF (735 kB) Citations (7)
References:
Abstract: We consider the theory of constant rank projective mappings of compact Riemannian manifolds from the global point of view. We study projective immersions and submersions. As an example of the results, let f:(M,g)(N,g) be a projective submersion of an m-dimensional Riemannian manifold (M,g) onto an (m1)-dimensional Riemannian manifold (N,g). Then (M,g) is locally the Riemannian product of the sheets of two integrable distributions Kerf and (Kerf) whenever (M,g) is one of the two following types: (a) a complete manifold with Ric0 (b) a compact oriented manifold with Ric0.
Received: 25.11.1992
English version:
Mathematical Notes, 1995, Volume 58, Issue 1, Pages 752–756
DOI: https://doi.org/10.1007/BF02306184
Bibliographic databases:
Language: Russian
Citation: S. E. Stepanov, “On the global theory of projective mappings”, Mat. Zametki, 58:1 (1995), 111–118; Math. Notes, 58:1 (1995), 752–756
Citation in format AMSBIB
\Bibitem{Ste95}
\by S.~E.~Stepanov
\paper On~the global theory of projective mappings
\jour Mat. Zametki
\yr 1995
\vol 58
\issue 1
\pages 111--118
\mathnet{http://mi.mathnet.ru/mzm2028}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1361116}
\zmath{https://zbmath.org/?q=an:0855.53023}
\transl
\jour Math. Notes
\yr 1995
\vol 58
\issue 1
\pages 752--756
\crossref{https://doi.org/10.1007/BF02306184}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TV39900009}
Linking options:
  • https://www.mathnet.ru/eng/mzm2028
  • https://www.mathnet.ru/eng/mzm/v58/i1/p111
  • This publication is cited in the following 7 articles:
    1. Volodymyr Berezovski, Yevhen Cherevko, Irena Hinterleitner, Patrik Peška, “Geodesic Mappings onto Generalized m-Ricci-Symmetric Spaces”, Mathematics, 10:13 (2022), 2165  crossref
    2. I. Mikesh, S. Formella, I. Ginterleitner, N. I. Guseva, “Nekotorye voprosy geodezicheskikh otobrazhenii prostranstv Einshteina”, Geometriya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 203, VINITI RAN, M., 2021, 50–61  mathnet  crossref
    3. I. Ginterleitner, N. I. Guseva, I. Mikesh, “O geodezicheskoi opredelennosti tochkami podobiya”, Trudy mezhdunarodnoi konferentsii «Klassicheskaya i sovremennaya geometriya», posvyaschennoi 100-letiyu so dnya rozhdeniya professora Vyacheslava Timofeevicha Bazyleva. Moskva, 22–25 aprelya 2019 g. Chast 4, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 182, VINITI RAN, M., 2020, 19–27  mathnet  crossref  mathscinet
    4. Sergey E. Stepanov, Josef Mikeš, “Liouville-type theorems for some classes of Riemannian almost product manifolds and for special mappings of Riemannian manifolds”, Differential Geometry and its Applications, 54 (2017), 111  crossref
    5. I. A. Alexandrova, S. E. Stepanov, I. I. Tsyganok, “Liouville-type theorems for the theories of Riemannian almost product structures and submersions”, J. Math. Sci., 230:1 (2018), 1–9  mathnet  crossref  crossref
    6. Mikes J. Stepanova E. Vanzurova A., “Differential Geometry of Special Mappings”, Differential Geometry of Special Mappings, Palacky Univ, 2015, 1–566  mathscinet  isi
    7. S. E. Stepanov, “On the geometry of projective submersions of Riemannian manifolds”, Russian Math. (Iz. VUZ), 43:9 (1999), 44–50  mathnet  mathscinet  zmath  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:454
    Full-text PDF :132
    References:58
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025