Abstract:
We consider the theory of constant rank projective mappings of compact Riemannian manifolds from the global point of view. We study projective immersions and submersions. As an example of the results, let f:(M,g)→(N,g′) be a projective submersion of an m-dimensional Riemannian manifold (M,g) onto an (m−1)-dimensional Riemannian manifold (N,g′). Then (M,g) is locally the Riemannian product of the sheets of two integrable distributions Kerf∗ and (Kerf∗)⊥ whenever (M,g) is one of the two following types: (a) a complete manifold with Ric⩾0 (b) a compact oriented manifold with Ric⩽0.
I. Mikesh, S. Formella, I. Ginterleitner, N. I. Guseva, “Nekotorye voprosy geodezicheskikh otobrazhenii prostranstv Einshteina”, Geometriya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 203, VINITI RAN, M., 2021, 50–61
I. Ginterleitner, N. I. Guseva, I. Mikesh, “O geodezicheskoi opredelennosti tochkami podobiya”, Trudy mezhdunarodnoi konferentsii «Klassicheskaya i sovremennaya geometriya»,
posvyaschennoi 100-letiyu so dnya rozhdeniya professora Vyacheslava Timofeevicha Bazyleva.
Moskva, 22–25 aprelya 2019 g. Chast 4, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 182, VINITI RAN, M., 2020, 19–27
Sergey E. Stepanov, Josef Mikeš, “Liouville-type theorems for some classes of Riemannian almost product manifolds and for special mappings of Riemannian manifolds”, Differential Geometry and its Applications, 54 (2017), 111
I. A. Alexandrova, S. E. Stepanov, I. I. Tsyganok, “Liouville-type theorems for the theories of Riemannian almost product structures and submersions”, J. Math. Sci., 230:1 (2018), 1–9
Mikes J. Stepanova E. Vanzurova A., “Differential Geometry of Special Mappings”, Differential Geometry of Special Mappings, Palacky Univ, 2015, 1–566
S. E. Stepanov, “On the geometry of projective submersions of Riemannian manifolds”, Russian Math. (Iz. VUZ), 43:9 (1999), 44–50